Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/36910
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGachau, Susan-
dc.contributor.authorNJAGI, Edmund-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorOwuor, Nelson-
dc.contributor.authorSarguta, Rachel-
dc.contributor.authorEnglish, Mike-
dc.contributor.authorAyieko, Philip-
dc.date.accessioned2022-03-17T13:32:32Z-
dc.date.available2022-03-17T13:32:32Z-
dc.date.issued2022-
dc.date.submitted2022-03-10T14:21:43Z-
dc.identifier.citationPharmaceutical Statistics, 21 (5), p. 845-864-
dc.identifier.issn1539-1604-
dc.identifier.urihttp://hdl.handle.net/1942/36910-
dc.description.abstractMultiple outcomes reflecting different aspects of routine care are a common phenomenon in health care research. A common approach of handling such outcomes is multiple univariate analyses, an approach which does not allow for answering research questions pertaining to joint inference. In this study, we sought to study associations among nine pediatric pneumonia care outcomes spanning assessment, diagnosis and treatment domains of care, while circumventing the computational challenge posed by their clustered and high-dimensional nature and incompletely recorded covariates. We analyzed data from a cluster randomized trial conducted in 12 Kenyan hospitals. There were varying degrees of missingness in the covariates of interest, and these were multiply imputed using latent normal joint modeling. We used the pairwise joint modeling strategy to fit a correlated random effects joint model for the nine outcomes. This entailed fitting 36 bivariate generalized linear mixed models and deriving inference for the joint model using pseudo-likelihood theory. We also analyzed the nine outcomes separately before and after multiple imputation. We observed joint effects of patient-, clinician- and hospital-level factors on pneumonia care indicators before and after multiple imputation of missing covariates. In both pairwise joint modeling and separate univariate analysis methods, enhanced audit and feedback improved documentation and adherence to recommended clinical guidelines over time in six and five pneumonia care indicators, respectively. Additionally, multiple imputation improved precision of parameter estimates compared to complete case analysis. The strength and direction of association among pneumonia outcomes varied within and across the three domains of pneumonia care-
dc.description.sponsorshipThis work was supported through the DELTAS Africa Initiative Grant No. 107754/Z/15/Z-DELTAS Africa SSACAB. The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences (AAS)’s Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa's Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust (Grant No. 107754/Z/15/Z) and the UK government. The views expressed in this publication are those of the author(s) and not necessarily those of AAS, NEPAD Agency, Wellcome Trust or the UK government. Funds from the Wellcome Trust (Grant No. 207522) awarded to Prof. Mike English as a senior Fellow together with additional funds from a Wellcome Trust core grant awarded to the KEMRIWellcome Trust Research Programme (Grant No. 092654) supported CIN data collection.-
dc.language.isoen-
dc.publisherWILEY-
dc.rights2022 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited-
dc.subject.othermultiple imputation-
dc.subject.otherpairwise joint modeling-
dc.subject.otherpediatric care-
dc.subject.otherpneumonia-
dc.subject.otherpseudo-likelihood-
dc.titlePairwise joint modeling of clustered and high-dimensional outcomes with covariate missingness in pediatric pneumonia care-
dc.typeJournal Contribution-
dc.identifier.epage864-
dc.identifier.issue5-
dc.identifier.spage845-
dc.identifier.volume21-
local.format.pages20-
local.bibliographicCitation.jcatA1-
dc.description.notesGachau, S (corresponding author), Kenya Med Res Inst Wellcome Trust Res Programme, Hlth Serv Unit, Nairobi, Kenya.-
dc.description.notessgachau06@gmail.com-
local.publisher.place111 RIVER ST, HOBOKEN 07030-5774, NJ USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1002/pst.2197-
dc.identifier.pmid35199938-
dc.identifier.isi000760278200001-
dc.identifier.eissn1539-1612-
dc.identifier.eissn1539-1612-
local.provider.typewosris-
local.description.affiliation[Gachau, Susan; English, Mike] Kenya Med Res Inst Wellcome Trust Res Programme, Hlth Serv Unit, Nairobi, Kenya.-
local.description.affiliation[Gachau, Susan; Owuor, Nelson; Sarguta, Rachel] Univ Nairobi, Sch Math, Nairobi, Kenya.-
local.description.affiliation[Njagi, Edmund Njeru] London Sch Hyg & Trop Med, Dept Noncommunicable Dis Epidemiol, London, England.-
local.description.affiliation[Molenberghs, Geert] Univ Hasselt, Ctr Stat, Hasselt, Belgium.-
local.description.affiliation[Molenberghs, Geert] Katholieke Univ Leuven, Interuniv Inst Biostat & Stat Bioinformat, Leuven, Belgium.-
local.description.affiliation[English, Mike] Univ Oxford, Nuffield Dept Med, Oxford, England.-
local.description.affiliation[Ayieko, Philip] London Sch Hyg & Trop Med, Dept Infect Dis Epidemiol, London, England.-
local.description.affiliation[Ayieko, Philip] Mwanza Intervent Trials Unit, Mwanza, Tanzania.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorGachau, Susan-
item.contributorNJAGI, Edmund-
item.contributorMOLENBERGHS, Geert-
item.contributorOwuor, Nelson-
item.contributorSarguta, Rachel-
item.contributorEnglish, Mike-
item.contributorAyieko, Philip-
item.fullcitationGachau, Susan; NJAGI, Edmund; MOLENBERGHS, Geert; Owuor, Nelson; Sarguta, Rachel; English, Mike & Ayieko, Philip (2022) Pairwise joint modeling of clustered and high-dimensional outcomes with covariate missingness in pediatric pneumonia care. In: Pharmaceutical Statistics, 21 (5), p. 845-864.-
item.accessRightsOpen Access-
item.validationecoom 2023-
crisitem.journal.issn1539-1604-
crisitem.journal.eissn1539-1612-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.