Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/36931
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVerboven, Sam-
dc.contributor.authorMARTIN, Niels-
dc.date.accessioned2022-03-18T13:32:35Z-
dc.date.available2022-03-18T13:32:35Z-
dc.date.issued2022-
dc.date.submitted2022-03-04T21:19:51Z-
dc.identifier.citationMunoz-Gama, Jorge; Lu, Xixi (Ed.). Process Mining Workshops, ICPM 2021, Springer, p. 327-339-
dc.identifier.isbn9783030985806-
dc.identifier.isbn9783030985813-
dc.identifier.issn1865-1348-
dc.identifier.urihttp://hdl.handle.net/1942/36931-
dc.description.abstractRecent developments in causal machine learning open perspectives for new approaches that support decision-making in healthcare processes using causal models. In particular, Heterogeneous Treatment Effect (HTE) inference enables the estimation of causal treatment effects for individual cases, offering great potential in a process mining context. At the same time, HTE literature typically focuses on clinical outcome measures, disregarding process efficiency. This paper shows the potential of jointly considering the clinical and operational effects of treatments in the context of healthcare processes. Moreover, we present a simple pipeline that makes existing HTE machine learning techniques directly applicable to event logs. Besides these conceptual contributions, a proof-of-concept application starting from the publicly available sepsis event log is outlined, forming the basis for a critical reflection regarding HTE estimation in a process mining context.-
dc.language.isoen-
dc.publisherSpringer-
dc.relation.ispartofseriesLecture Notes in Business Information Processing-
dc.rightsThe Author(s) 2022. Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.-
dc.subject.otherHeterogeneous Treatment Effect-
dc.subject.otherProcess Mining-
dc.subject.otherMachine Learning-
dc.subject.otherEvent Log-
dc.titleCombining the clinical and operational perspectives in heterogeneous treatment effect inference in healthcare processes-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsMunoz-Gama, Jorge-
local.bibliographicCitation.authorsLu, Xixi-
local.bibliographicCitation.conferencename3rd International Conference on Process Mining (ICPM)-
local.bibliographicCitation.conferenceplaceEindhoven-
dc.identifier.epage339-
dc.identifier.spage327-
dc.identifier.volume433-
local.format.pages13-
local.bibliographicCitation.jcatC1-
local.publisher.placeGEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr433-
dc.identifier.doi10.1007/978-3-030-98581-3_24-
dc.identifier.isi000787744500024-
dc.identifier.eissn1865-1356-
local.provider.typePdf-
local.bibliographicCitation.btitleProcess Mining Workshops, ICPM 2021-
local.uhasselt.internationalno-
item.contributorVerboven, Sam-
item.contributorMARTIN, Niels-
item.validationecoom 2023-
item.fullcitationVerboven, Sam & MARTIN, Niels (2022) Combining the clinical and operational perspectives in heterogeneous treatment effect inference in healthcare processes. In: Munoz-Gama, Jorge; Lu, Xixi (Ed.). Process Mining Workshops, ICPM 2021, Springer, p. 327-339.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.