Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37066
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVERHASSELT, Anneleen-
dc.contributor.authorFLOREZ POVEDA, Alvaro-
dc.contributor.authorVan Keilegeom, Ingrid-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2022-03-29T14:09:18Z-
dc.date.available2022-03-29T14:09:18Z-
dc.date.issued2021-
dc.date.submitted2022-03-17T13:41:13Z-
dc.identifier.citationJournal of Statistical Research, 55 (1) , p. 43 -58-
dc.identifier.urihttp://hdl.handle.net/1942/37066-
dc.description.abstractWe investigate the performance of methods for estimating the conditional quantile of a response based on longitudinal data, when outcomes are incomplete and when the correlation between repeated responses is ignored. In a simulation study, we compare the performance of the quantile regression estimator based on the complete cases, the available cases, quantile-based multiple imputation, and quantile-based inverse probability weight-ing. In the data setting considered, quantile-based multiple imputation is the most promising method with the best bias-efficiency trade-off. A potential drawback, however, is its computation time.-
dc.language.isoen-
dc.subject.otherand phrases: Dropout-
dc.subject.otherInverse probability weighting-
dc.subject.otherMissing data-
dc.subject.otherMultiple imputation-
dc.subject.otherQuantile regression-
dc.titleThe impact of incomplete data on quantile regression for longitudinal data-
dc.typeJournal Contribution-
dc.identifier.epage58-
dc.identifier.issue1-
dc.identifier.spage43-
dc.identifier.volume55-
local.bibliographicCitation.jcatA2-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.type.programmeH2020-
local.relation.h2020694409-
dc.identifier.doi10.47302/jsr.2021550105-
local.provider.typePdf-
local.uhasselt.internationalno-
item.contributorVERHASSELT, Anneleen-
item.contributorFLOREZ POVEDA, Alvaro-
item.contributorVan Keilegeom, Ingrid-
item.contributorMOLENBERGHS, Geert-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationVERHASSELT, Anneleen; FLOREZ POVEDA, Alvaro; Van Keilegeom, Ingrid & MOLENBERGHS, Geert (2021) The impact of incomplete data on quantile regression for longitudinal data. In: Journal of Statistical Research, 55 (1) , p. 43 -58.-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
55n1_3.pdfPublished version243.05 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.