Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37162
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBOURGEOIS, Emilie-
dc.contributor.authorSOUCEK, Josef-
dc.contributor.authorHRUBY, Jaroslav-
dc.contributor.authorGULKA, Michal-
dc.contributor.authorNESLADEK, Milos-
dc.date.accessioned2022-04-04T11:35:01Z-
dc.date.available2022-04-04T11:35:01Z-
dc.date.issued2022-
dc.date.submitted2022-03-31T10:47:58Z-
dc.identifier.citationADVANCED QUANTUM TECHNOLOGIES, (Art N° 2100153)-
dc.identifier.urihttp://hdl.handle.net/1942/37162-
dc.description.abstractThe photoelectric detection of nitrogen-vacancy (NV) magnetic resonance (PDMR) in diamond, used for spin state detection and based on reading the photocurrent resulting from NV ionization, offers physical and technical advantages for the development of miniaturized and scalable quantum sensors, as well as solid-state quantum information devices integrated with electronics. Charge exchanges between NV centers and other optoelectrically active defects in diamond are an essential part of the PDMR scheme, impacting the spin-state control and the performances of the photoelectric readout. Through experimental characterization and modeling, processes governing the spin-state contrast, in particular the hole carrier contribution to the photocurrent and the role of acceptor-type defects are discussed. Such acceptor defects can act as traps for free electrons resulting from NV photoionization. Consequently, the hole current can increase at resonance, ultimately leading to an inversion of the sign of PDMR resonances, i.e. to a positive spin contrast. Based on these findings, a method to improve PDMR performances in terms of spin contrast and photoelectric detection rate by selectively ionizing low-energy acceptor defects using a bias red illumination is proposed. This method is shown to lead to a significant improvement of the photoelectric spin detection sensitivity, important for future practical devices.-
dc.description.sponsorshipThis work was supported by the Grant Agency of the Czech Republic (Project Number 16–16336S), the FWO project DIAQUANT (S004018N), the FWO Project G0E7417N, the QUANTERA project Q-Magine (R-8843), and the EU project ASTERIQS (820394). The authors thank D. Budker and A. Jarmola for providing some of the samples used in this study.-
dc.language.isoen-
dc.publisherWILEY-
dc.rights2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.-
dc.subject.othercrystal defects in diamond-
dc.subject.othercharge exchanges-
dc.subject.otherelectron spin resonances-
dc.subject.othernitrogen-vacancy centers-
dc.subject.otherphotoelectric detection-
dc.titlePhotoelectric Detection of Nitrogen‐Vacancy Centers Magnetic Resonances in Diamond: Role of Charge Exchanges with Other Optoelectrically Active Defects-
dc.typeJournal Contribution-
local.format.pages13-
local.bibliographicCitation.jcatA1-
dc.description.notesBourgeois, E; Soucek, J; Hruby, J; Gulka, M; Nesladek, M (corresponding author), Hasselt Univ, Martelarenlaan 42, B-3500 Hasselt, Belgium.; Bourgeois, E; Soucek, J; Hruby, J; Gulka, M; Nesladek, M (corresponding author), IMEC, IMOMEC Div, Kapeldreef 75, B-3001 Leuven, Belgium.; Soucek, J; Hruby, J; Gulka, M; Nesladek, M (corresponding author), Czech Tech Univ, Fac Biomed Engn, Sitna Sq 3105, Kladno 27201, Czech Republic.-
dc.description.notesemilie.bourgeois@uhasselt.be; josef.soucek@uhasselt.be;-
dc.description.notesjaroslav.hruby@uhasselt.be; gulka.michal@gmail.com;-
dc.description.notesmilos.nesladek@uhasselt.be-
local.publisher.place111 RIVER ST, HOBOKEN 07030-5774, NJ USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusEarly view-
local.bibliographicCitation.artnr2100153-
dc.identifier.doi10.1002/qute.202100153-
dc.identifier.isiWOS:000769998600001-
local.provider.typewosris-
local.description.affiliation[Bourgeois, Emilie; Soucek, Josef; Hruby, Jaroslav; Gulka, Michal; Nesladek, Milos] Hasselt Univ, Martelarenlaan 42, B-3500 Hasselt, Belgium.-
local.description.affiliation[Bourgeois, Emilie; Soucek, Josef; Hruby, Jaroslav; Gulka, Michal; Nesladek, Milos] IMEC, IMOMEC Div, Kapeldreef 75, B-3001 Leuven, Belgium.-
local.description.affiliation[Soucek, Josef; Gulka, Michal; Nesladek, Milos] Czech Tech Univ, Fac Biomed Engn, Sitna Sq 3105, Kladno 27201, Czech Republic.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorBOURGEOIS, Emilie-
item.contributorSOUCEK, Josef-
item.contributorHRUBY, Jaroslav-
item.contributorGULKA, Michal-
item.contributorNESLADEK, Milos-
item.accessRightsOpen Access-
item.validationecoom 2023-
item.fullcitationBOURGEOIS, Emilie; SOUCEK, Josef; HRUBY, Jaroslav; GULKA, Michal & NESLADEK, Milos (2022) Photoelectric Detection of Nitrogen‐Vacancy Centers Magnetic Resonances in Diamond: Role of Charge Exchanges with Other Optoelectrically Active Defects. In: ADVANCED QUANTUM TECHNOLOGIES, (Art N° 2100153).-
crisitem.journal.eissn2511-9044-
Appears in Collections:Research publications
Show simple item record

WEB OF SCIENCETM
Citations

3
checked on Apr 23, 2024

Page view(s)

78
checked on Sep 6, 2022

Download(s)

74
checked on Sep 6, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.