Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37253
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJastrzebska, Agnieszka-
dc.contributor.authorNAPOLES RUIZ, Gonzalo-
dc.contributor.authorSalgueiro, Yamisleydi-
dc.contributor.authorVANHOOF, Koen-
dc.date.accessioned2022-05-04T11:59:11Z-
dc.date.available2022-05-04T11:59:11Z-
dc.date.issued2022-
dc.date.submitted2022-05-03T15:26:43Z-
dc.identifier.citationKnowledge-based Systems, 238 , (Art N° 107811)-
dc.identifier.urihttp://hdl.handle.net/1942/37253-
dc.description.abstractTime series similarity evaluation is a crucial processing task performed either as a stand-alone action or as a part of extensive data analysis schemes. Among essential procedures that rely on measuring time series similarity, we find time series clustering and classification. While the similarity of regular (not temporal) data frames is studied extensively, there are not many methods that account for the time flow. In particular, there is a need for methods that are easy to interpret by a human being. In this paper, we present a concept-based approach for time series similarity evaluation. Firstly, a global model describing a given dataset of time series (made of two or more time series) is built. Then, for each time series in the dataset, we create the corresponding local model. Comparing time series is performed with the aid of their local models instead of raw time series values. In the paper, the described processing scheme is implemented using fuzzy sets representing concepts. The proposed approach has been applied to the task of time series classification, yielding highly satisfactory results.& nbsp;(c) 2021 Elsevier B.V. All rights reserved.-
dc.description.sponsorshipThe project was funded by POB Research Centre for Artificial Intelligence and Robotics of Warsaw University of Technology within the Excellence Initiative Program-Research University (ID-UB). Part of this research was supported by the Special Research Fund (BOF) of the Hasselt University, Belgium, through the project BOF19KV15.-
dc.language.isoen-
dc.publisherELSEVIER-
dc.rights2021 Elsevier B.V. All rights reserved.-
dc.subject.otherTime series-
dc.subject.otherConcept-based model-
dc.subject.otherSimilarity-
dc.subject.otherTime series clustering-
dc.subject.otherTime series classification-
dc.subject.otherFuzzy models-
dc.titleEvaluating time series similarity using concept-based models-
dc.typeJournal Contribution-
dc.identifier.volume238-
local.format.pages9-
local.bibliographicCitation.jcatA1-
dc.description.notesJastrzebska, A (corresponding author), Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, Poland.-
dc.description.notesA.Jastrzebska@mini.pw.edu.pl-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr107811-
dc.identifier.doi10.1016/j.knosys.2021.107811-
dc.identifier.isiWOS:000779180700021-
dc.contributor.orcidSalgueiro Sicilia, Yamisleydi/0000-0002-1946-0053-
local.provider.typewosris-
local.description.affiliation[Jastrzebska, Agnieszka] Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, Poland.-
local.description.affiliation[Napoles, Gonzalo] Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands.-
local.description.affiliation[Salgueiro, Yamisleydi] Univ Talca, Fac Engn, Dept Comp Sci, Campus Curico, Talca, Chile.-
local.description.affiliation[Vanhoof, Koen] Hasselt Univ, Fac Business Econ, Hasselt, Belgium.-
local.uhasselt.internationalyes-
item.fullcitationJastrzebska, Agnieszka; NAPOLES RUIZ, Gonzalo; Salgueiro, Yamisleydi & VANHOOF, Koen (2022) Evaluating time series similarity using concept-based models. In: Knowledge-based Systems, 238 , (Art N° 107811).-
item.accessRightsClosed Access-
item.contributorJastrzebska, Agnieszka-
item.contributorNAPOLES RUIZ, Gonzalo-
item.contributorSalgueiro, Yamisleydi-
item.contributorVANHOOF, Koen-
item.validationecoom 2023-
item.fulltextWith Fulltext-
crisitem.journal.issn0950-7051-
crisitem.journal.eissn1872-7409-
Appears in Collections:Research publications
Show simple item record

WEB OF SCIENCETM
Citations

5
checked on Dec 7, 2024

Page view(s)

50
checked on Sep 6, 2022

Download(s)

2
checked on Sep 6, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.