Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37388
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHUZAK, Renato-
dc.contributor.authorRojas, David-
dc.date.accessioned2022-06-01T13:08:04Z-
dc.date.available2022-06-01T13:08:04Z-
dc.date.issued2022-
dc.date.submitted2022-05-26T15:36:51Z-
dc.identifier.citationQualitative Theory of Dynamical Systems, 21 (3) (Art N° 77)-
dc.identifier.issn1575-5460-
dc.identifier.urihttp://hdl.handle.net/1942/37388-
dc.description.abstractIn this paper we initiate the study of the Chebyshev property of Abelian integrals generated by a non-generic turning point in planar slow-fast systems. Such Abelian integrals generalize the Abelian integrals produced by a slow-fast Hopf point (or generic turning point), introduced in Dumortier et al. (Discrete Contin Dyn Syst Ser S 2(4):723–781, 2009), and play an important role in studying the number of limit cycles born from the non-generic turning point.-
dc.description.sponsorshipAcknowledgements D.R. have been partially supported by the Ministerio de Ciéncia e Innovación grant PID2020-118281GB-C31, and he is member of the Consolidated Research Group 2017 SGR 1617 funded by the Generalitat de Catalunya. D.R. is a Serra Húnter Fellow. Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature-
dc.language.isoen-
dc.publisherSPRINGER BASEL AG-
dc.rightsOpen Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.-
dc.subject.otherAbelian integrals-
dc.subject.otherChebyshev systems-
dc.subject.otherplanar turning points 2020 Mathematics Subject Classification: 34E15-
dc.subject.other34E17-
dc.titleAbelian Integrals and Non-generic Turning Points-
dc.typeJournal Contribution-
dc.identifier.issue3-
dc.identifier.volume21-
local.format.pages16-
local.bibliographicCitation.jcatA1-
local.publisher.placePICASSOPLATZ 4, BASEL, 4052, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr77-
dc.identifier.doi10.1007/s12346-022-00609-7-
dc.identifier.isi000802037600001-
dc.identifier.eissn1662-3592-
local.provider.typeCrossRef-
local.dataset.doihttps://doi.org/10.1007/s12346-022-00609-7-
local.uhasselt.internationalyes-
item.contributorHUZAK, Renato-
item.contributorRojas, David-
item.fullcitationHUZAK, Renato & Rojas, David (2022) Abelian Integrals and Non-generic Turning Points. In: Qualitative Theory of Dynamical Systems, 21 (3) (Art N° 77).-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2023-
crisitem.journal.issn1575-5460-
crisitem.journal.eissn1662-3592-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Huzak-Rojas2022_Article_AbelianIntegralsAndNon-generic.pdfPublished version607.83 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.