Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37477
Title: On lie algebras with primitive envelopes, supplements
Authors: OOMS, Alfons 
Issue Date: 1976
Publisher: 
Source: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 58 , p. 67 -72
Abstract: Let L be a finite dimensional Lie algebra over a field k of characteristic zero, U(L) its universal enveloping algebra and Z(D(L)) the center of the division ring of quotients of U(L). A number of conditions on L are each shown to be equivalent with the primitive of U(L). Also, a formula is given for the transcendency degree of Z(D(L)) over k.
Keywords: Finite dimensional Lie algebra;universal enveloping algebra;primitive algebra;division ring of quotients
Document URI: http://hdl.handle.net/1942/37477
ISSN: 0002-9939
e-ISSN: 1088-6826
DOI: 10.1090 / S0002- 9939-1976-0430007-6
Rights: American Mathematical Society 1976 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
S0002-9939-1976-0430007-6.pdf577.71 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.