Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37496
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLe Bruyn, Lieven-
dc.contributor.authorOOMS, Alfons-
dc.date.accessioned2022-06-13T07:32:46Z-
dc.date.available2022-06-13T07:32:46Z-
dc.date.issued1985-
dc.date.submitted2022-06-13T07:27:16Z-
dc.identifier.citationPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 93 (3) , p. 397 -397-
dc.identifier.urihttp://hdl.handle.net/1942/37496-
dc.description.abstractLet L be a finite-dimensional Lie algebra over a field k of characteristic zero, and U(L) its universal enveloping algebra. We show that the scmicenter of U(L) is a UFD. More generally, the same result holds when k is replaced by any factorial ring R of characteristic zero. Introduction. Throughout this note, L will be a nonzero finite-dimensional Lie algebra over a field k of characteristic zero. Let U(L) be the universal enveloping algebra of L with center Z(U(L)) and D(L) will be the division ring of quotients of U(L) with center Z(D(L)). For each X g L*, we denote by D(L)X the set of those u g D(L) such that xu-ux = X(x)u for all x g L. Its elements are called the semi-invariants of D(L) relative to X. Clearly, D(L)-
dc.language.isoen-
dc.publisher-
dc.rights1985 American Mathematical Society-
dc.titleThe semicenter of an enveloping algebra is factorial-
dc.typeJournal Contribution-
dc.identifier.epage397-
dc.identifier.issue3-
dc.identifier.spage397-
dc.identifier.volume93-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1090/S0002-9939-1985-0773989-0-
dc.identifier.isiA1985AEK2100004-
local.provider.typeCrossRef-
local.uhasselt.internationalno-
item.accessRightsClosed Access-
item.fulltextWith Fulltext-
item.fullcitationLe Bruyn, Lieven & OOMS, Alfons (1985) The semicenter of an enveloping algebra is factorial. In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 93 (3) , p. 397 -397.-
item.contributorLe Bruyn, Lieven-
item.contributorOOMS, Alfons-
crisitem.journal.issn0002-9939-
crisitem.journal.eissn1088-6826-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

13
checked on Oct 6, 2025

WEB OF SCIENCETM
Citations

13
checked on Oct 9, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.