Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/37496Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Le Bruyn, Lieven | - |
| dc.contributor.author | OOMS, Alfons | - |
| dc.date.accessioned | 2022-06-13T07:32:46Z | - |
| dc.date.available | 2022-06-13T07:32:46Z | - |
| dc.date.issued | 1985 | - |
| dc.date.submitted | 2022-06-13T07:27:16Z | - |
| dc.identifier.citation | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 93 (3) , p. 397 -397 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/37496 | - |
| dc.description.abstract | Let L be a finite-dimensional Lie algebra over a field k of characteristic zero, and U(L) its universal enveloping algebra. We show that the scmicenter of U(L) is a UFD. More generally, the same result holds when k is replaced by any factorial ring R of characteristic zero. Introduction. Throughout this note, L will be a nonzero finite-dimensional Lie algebra over a field k of characteristic zero. Let U(L) be the universal enveloping algebra of L with center Z(U(L)) and D(L) will be the division ring of quotients of U(L) with center Z(D(L)). For each X g L*, we denote by D(L)X the set of those u g D(L) such that xu-ux = X(x)u for all x g L. Its elements are called the semi-invariants of D(L) relative to X. Clearly, D(L) | - |
| dc.language.iso | en | - |
| dc.publisher | - | |
| dc.rights | 1985 American Mathematical Society | - |
| dc.title | The semicenter of an enveloping algebra is factorial | - |
| dc.type | Journal Contribution | - |
| dc.identifier.epage | 397 | - |
| dc.identifier.issue | 3 | - |
| dc.identifier.spage | 397 | - |
| dc.identifier.volume | 93 | - |
| local.bibliographicCitation.jcat | A1 | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Article | - |
| dc.identifier.doi | 10.1090/S0002-9939-1985-0773989-0 | - |
| dc.identifier.isi | A1985AEK2100004 | - |
| local.provider.type | CrossRef | - |
| local.uhasselt.international | no | - |
| item.fulltext | With Fulltext | - |
| item.fullcitation | Le Bruyn, Lieven & OOMS, Alfons (1985) The semicenter of an enveloping algebra is factorial. In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 93 (3) , p. 397 -397. | - |
| item.accessRights | Closed Access | - |
| item.contributor | Le Bruyn, Lieven | - |
| item.contributor | OOMS, Alfons | - |
| crisitem.journal.issn | 0002-9939 | - |
| crisitem.journal.eissn | 1088-6826 | - |
| Appears in Collections: | Research publications | |
SCOPUSTM
Citations
13
checked on Dec 11, 2025
WEB OF SCIENCETM
Citations
13
checked on Dec 9, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.