Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37682
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTackett, Brian M.-
dc.contributor.authorRaciti, David-
dc.contributor.authorBRADY, Nick-
dc.contributor.authorRitzert, Nicole L.-
dc.contributor.authorMoffat, Thomas P.-
dc.date.accessioned2022-07-07T13:59:25Z-
dc.date.available2022-07-07T13:59:25Z-
dc.date.issued2022-
dc.date.submitted2022-07-07T09:24:27Z-
dc.identifier.citationJournal of physical chemistry. C, 126 (17) , p. 7456 -7467-
dc.identifier.urihttp://hdl.handle.net/1942/37682-
dc.description.abstractElectrocatalytic reduction of CO2 to CO in aqueous media offers an important path to more sustainable carbon utilization. Optimization of this process relies on a detailed understanding of the dynamics of boundary layer chemistry, e.g., pH, adjacent to the electrode, which is difficult to quantify without perturbing the system. In this work, a versatile IrOx pH-sensing thin film is fabricated on the ring of a rotating ring disk electrode (RRDE) to enable potentiometric boundary layer pH measurement under well-defined mass flow conditions. An analytical reaction-convection-diffusion model is used to translate ring measurements to the pH at the disk surface under reaction conditions. The measurements and model effectively capture the drastic pH shear on a Au electrode during hydrogen evolution reaction in a weak acid electrolyte. The pH trends are measured during CO2 reduction reaction in a 0.5 mol L-1 bicarbonate electrolyte, where the impact of buffering action is clearly demonstrated as a function of the rotation rate and RRDE geometry. The model and measurement provide a useful platform for further exploration of electrode kinetics influenced by reaction-induced pH change.-
dc.description.sponsorshipB.M.T. acknowledges support from the National Institute of Standards and Technology-National Research Council Postdoctoral Fellowship.-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.rights2022 American Chemical Society-
dc.titlePotentiometric Rotating Ring Disk Electrode Study of Interfacial pH during CO2 Reduction and H-2 Generation in Neutral and Weakly Acidic Media-
dc.typeJournal Contribution-
dc.identifier.epage7467-
dc.identifier.issue17-
dc.identifier.spage7456-
dc.identifier.volume126-
local.format.pages12-
local.bibliographicCitation.jcatA1-
dc.description.notesMoffat, TP (corresponding author), NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.-
dc.description.notesthomas.moffat@nist.gov-
local.publisher.place1155 16TH ST, NW, WASHINGTON, DC 20036 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1021/acs.jpcc.2c01504-
dc.identifier.isiWOS:000814854000012-
local.provider.typewosris-
local.description.affiliation[Tackett, Brian M.; Raciti, David; Moffat, Thomas P.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.-
local.description.affiliation[Tackett, Brian M.] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USA.-
local.description.affiliation[Brady, Nicholas W.] UHasselt, Inst Mat Res IMO Imomec, B-3500 Hasselt, Belgium.-
local.description.affiliation[Ritzert, Nicole L.] Amer Dent Assoc Sci & Res Inst, Gaithersburg, MD 20899 USA.-
local.uhasselt.internationalyes-
item.contributorTackett, Brian M.-
item.contributorRaciti, David-
item.contributorBRADY, Nick-
item.contributorRitzert, Nicole L.-
item.contributorMoffat, Thomas P.-
item.fulltextWith Fulltext-
item.fullcitationTackett, Brian M.; Raciti, David; BRADY, Nick; Ritzert, Nicole L. & Moffat, Thomas P. (2022) Potentiometric Rotating Ring Disk Electrode Study of Interfacial pH during CO2 Reduction and H-2 Generation in Neutral and Weakly Acidic Media. In: Journal of physical chemistry. C, 126 (17) , p. 7456 -7467.-
item.validationecoom 2023-
item.accessRightsRestricted Access-
crisitem.journal.issn1932-7447-
crisitem.journal.eissn1932-7455-
Appears in Collections:Research publications
Show simple item record

WEB OF SCIENCETM
Citations

9
checked on Jul 21, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.