Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37682
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTackett, Brian M.-
dc.contributor.authorRaciti, David-
dc.contributor.authorBRADY, Nick-
dc.contributor.authorRitzert, Nicole L.-
dc.contributor.authorMoffat, Thomas P.-
dc.date.accessioned2022-07-07T13:59:25Z-
dc.date.available2022-07-07T13:59:25Z-
dc.date.issued2022-
dc.date.submitted2022-07-07T09:24:27Z-
dc.identifier.citationThe Journal of Physical Chemistry C, 126 (17) , p. 7456 -7467-
dc.identifier.urihttp://hdl.handle.net/1942/37682-
dc.description.abstractElectrocatalytic reduction of CO2 to CO in aqueous media offers an important path to more sustainable carbon utilization. Optimization of this process relies on a detailed understanding of the dynamics of boundary layer chemistry, e.g., pH, adjacent to the electrode, which is difficult to quantify without perturbing the system. In this work, a versatile IrOx pH-sensing thin film is fabricated on the ring of a rotating ring disk electrode (RRDE) to enable potentiometric boundary layer pH measurement under well-defined mass flow conditions. An analytical reaction-convection-diffusion model is used to translate ring measurements to the pH at the disk surface under reaction conditions. The measurements and model effectively capture the drastic pH shear on a Au electrode during hydrogen evolution reaction in a weak acid electrolyte. The pH trends are measured during CO2 reduction reaction in a 0.5 mol L-1 bicarbonate electrolyte, where the impact of buffering action is clearly demonstrated as a function of the rotation rate and RRDE geometry. The model and measurement provide a useful platform for further exploration of electrode kinetics influenced by reaction-induced pH change.-
dc.description.sponsorshipB.M.T. acknowledges support from the National Institute of Standards and Technology-National Research Council Postdoctoral Fellowship.-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.rights2022 American Chemical Society-
dc.titlePotentiometric Rotating Ring Disk Electrode Study of Interfacial pH during CO2 Reduction and H-2 Generation in Neutral and Weakly Acidic Media-
dc.typeJournal Contribution-
dc.identifier.epage7467-
dc.identifier.issue17-
dc.identifier.spage7456-
dc.identifier.volume126-
local.format.pages12-
local.bibliographicCitation.jcatA1-
dc.description.notesMoffat, TP (corresponding author), NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.-
dc.description.notesthomas.moffat@nist.gov-
local.publisher.place1155 16TH ST, NW, WASHINGTON, DC 20036 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1021/acs.jpcc.2c01504-
dc.identifier.isiWOS:000814854000012-
local.provider.typewosris-
local.description.affiliation[Tackett, Brian M.; Raciti, David; Moffat, Thomas P.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.-
local.description.affiliation[Tackett, Brian M.] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USA.-
local.description.affiliation[Brady, Nicholas W.] UHasselt, Inst Mat Res IMO Imomec, B-3500 Hasselt, Belgium.-
local.description.affiliation[Ritzert, Nicole L.] Amer Dent Assoc Sci & Res Inst, Gaithersburg, MD 20899 USA.-
local.uhasselt.internationalyes-
item.fullcitationTackett, Brian M.; Raciti, David; BRADY, Nick; Ritzert, Nicole L. & Moffat, Thomas P. (2022) Potentiometric Rotating Ring Disk Electrode Study of Interfacial pH during CO2 Reduction and H-2 Generation in Neutral and Weakly Acidic Media. In: The Journal of Physical Chemistry C, 126 (17) , p. 7456 -7467.-
item.accessRightsRestricted Access-
item.contributorTackett, Brian M.-
item.contributorRaciti, David-
item.contributorBRADY, Nick-
item.contributorRitzert, Nicole L.-
item.contributorMoffat, Thomas P.-
item.fulltextWith Fulltext-
item.validationecoom 2023-
crisitem.journal.issn1932-7447-
crisitem.journal.eissn1932-7455-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

19
checked on Oct 13, 2025

WEB OF SCIENCETM
Citations

19
checked on Oct 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.