Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37717
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMc Carogher, K-
dc.contributor.authorDong, ZY-
dc.contributor.authorStephens, DS-
dc.contributor.authorLEBLEBICI, Mumin enis-
dc.contributor.authorMettin, R-
dc.contributor.authorKuhn, S-
dc.date.accessioned2022-07-13T12:25:45Z-
dc.date.available2022-07-13T12:25:45Z-
dc.date.issued2021-
dc.date.submitted2022-07-06T13:05:26Z-
dc.identifier.citationULTRASONICS SONOCHEMISTRY, 75 (Art N° 105611)-
dc.identifier.urihttp://hdl.handle.net/1942/37717-
dc.description.abstractIt is shown that a liquid slug in gas-liquid segmented flow in microchannels can act as an acoustic resonator to disperse large amounts of small liquid droplets, commonly referred to as atomization, into the gas phase. We investigate the principles of acoustic resonance within a liquid slug through experimental analysis and numerical simulation. A mechanism of atomization in the confined channels and a hypothesis based on high-speed image analysis that links acoustic resonance within a liquid slug with the observed atomization is proposed. The observed phenomenon provides a novel source of confined micro sprays and could be an avenue, amongst others, to overcome mass transfer limitations for gas-liquid processes in flow.-
dc.description.sponsorshipThis project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research andinnovation programme (grant agreement No. 101001024) . Z.D. acknowledges funding from Chemistry and Chemical Engineering Guangdong Laboratory (Grant No. 2011009) . D. S. and R. M. acknowledge funding from the European Union's Horizon 2020 research and innovation programme under the Marie SkodowskaCurie grant agreement No 721290 (MSCA-ETN COSMIC) .-
dc.language.isoen-
dc.publisherELSEVIER-
dc.rights© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license-
dc.subject.otherAcoustic resonance-
dc.subject.otherMicroreactors-
dc.subject.otherGas-liquid Taylor flow-
dc.subject.otherAtomization-
dc.subject.otherGas-liquid mass transfer-
dc.titleAcoustic resonance and atomization for gas-liquid systems in microreactors-
dc.typeJournal Contribution-
dc.identifier.volume75-
local.bibliographicCitation.jcatA1-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr105611-
local.type.programmeH2020-
local.relation.h2020grant agreement No. 101001024-
dc.identifier.doi10.1016/j.ultsonch.2021.105611-
dc.identifier.isi000670372700005-
local.provider.typeWeb of Science-
local.uhasselt.internationalyes-
item.fullcitationMc Carogher, K; Dong, ZY; Stephens, DS; LEBLEBICI, Mumin enis; Mettin, R & Kuhn, S (2021) Acoustic resonance and atomization for gas-liquid systems in microreactors. In: ULTRASONICS SONOCHEMISTRY, 75 (Art N° 105611).-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.contributorMc Carogher, K-
item.contributorDong, ZY-
item.contributorStephens, DS-
item.contributorLEBLEBICI, Mumin enis-
item.contributorMettin, R-
item.contributorKuhn, S-
crisitem.journal.issn1350-4177-
crisitem.journal.eissn1873-2828-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S135041772100153X-main.pdfPublished version14 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

12
checked on May 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.