Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37772
Title: The Influence of Synthesis Method on the Local Structure and Electrochemical Properties of Li-Rich/Mn-Rich NMC Cathode Materials for Li-Ion Batteries
Authors: Hendrickx, Mylène
PAULUS, Andreas 
Kirsanova, Maria A.
VAN BAEL, Marlies 
Abakumov, Artem M.
HARDY, An 
Hadermann, Joke
Issue Date: 2022
Publisher: MDPI
Source: NANOMATERIALS, 12 (13) (Art N° 2269)
Abstract: Electrochemical energy storage plays a vital role in combating global climate change. Nowadays lithium-ion battery technology remains the most prominent technology for rechargeable batteries. A key performance-limiting factor of lithium-ion batteries is the active material of the positive electrode (cathode). Lithium- and manganese-rich nickel manganese cobalt oxide (LMRNMC) cathode materials for Li-ion batteries are extensively investigated due to their high specific discharge capacities (>280 mAh/g). However, these materials are prone to severe capacity and voltage fade, which deteriorates the electrochemical performance. Capacity and voltage fade are strongly correlated with the particle morphology and nano- and microstructure of LMR-NMCs. By selecting an adequate synthesis strategy, the particle morphology and structure can be controlled, as such steering the electrochemical properties. In this manuscript we comparatively assessed the morphology and nanostructure of LMR-NMC (Li1.2Ni0.13Mn0.54Co0.13O2 ) prepared via an environmentally friendly aqueous solution-gel and co-precipitation route, respectively. The solution-gel (SG) synthesized material shows a Ni-enriched spinel-type surface layer at the {200} facets, which, based on our post-mortem high-angle annual dark-field scanning transmission electron microscopy and selectedarea electron diffraction analysis, could partly explain the retarded voltage fade compared to the co-precipitation (CP) synthesized material. In addition, deviations in voltage fade and capacity fade (the latter being larger for the SG material) could also be correlated with the different particle morphology obtained for both materials.
Keywords: TEM;solution gel;coprecipitation;Li-ion battery;cathode;NMC
Document URI: http://hdl.handle.net/1942/37772
e-ISSN: 2079-4991
DOI: 10.3390/nano12132269
ISI #: 000824547500001
Rights: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Category: A1
Type: Journal Contribution
Validations: ecoom 2023
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
nanomaterials-2022-The Influence of Synthesis Method on the Local Structure and.pdfPublished version5.93 MBAdobe PDFView/Open
Show full item record

WEB OF SCIENCETM
Citations

2
checked on Mar 22, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.