Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37982
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRozo, Andrea-
dc.contributor.authorBuil, Jeroen-
dc.contributor.authorMoeyersons, Jonathan-
dc.contributor.authorMorales, John-
dc.contributor.authorvan der Westen, Roberto Garcia-
dc.contributor.authorLijnen, Lien-
dc.contributor.authorSmeets, Christophe-
dc.contributor.authorJantzen, Sjors-
dc.contributor.authorMonpellier, Valerie-
dc.contributor.authorRUTTENS, David-
dc.contributor.authorVan Hoof , Chris-
dc.contributor.authorVan Huffel, Sabine-
dc.contributor.authorGroenendaal, Willemijn-
dc.contributor.authorVaron, Carolina-
dc.date.accessioned2022-09-05T13:39:39Z-
dc.date.available2022-09-05T13:39:39Z-
dc.date.issued2021-
dc.date.submitted2022-08-16T13:03:15Z-
dc.identifier.citation2021 COMPUTING IN CARDIOLOGY (CINC), IEEE,-
dc.identifier.issn2325-8861-
dc.identifier.urihttp://hdl.handle.net/1942/37982-
dc.description.abstractThoracic bio-impedance (BioZ) measurements have been proposed as an alternative for respiratory monitoring. Given the ambulatory nature of this modality, it is more prone to noise sources. In this study, two pre-trained machine learning models were used to classify BioZ signals into clean and noisy classes. The models were trained on data from patients suffering from chronic obstructive pulmonary disease, and their performance was evaluated on data from patients undergoing bariatric surgery. Additionally, transfer learning (TL) was used to optimize the models for the new patient cohort. Lastly, the effect of different breathing patterns on the performance of the machine learning models was studied. Results showed that the models performed accurately when applying them to another patient population and their performance was improved by TL. However, different imposed respiratory frequencies were found to affect the performance of the models.-
dc.description.sponsorshipKU Leuven STADIUS acknowledges the financial support of imec. This research received funding from the Flemish Government (AI Research Program). S.V.H., A.R., J.M. and J.M. are affiliated to Leuven.AI - KU Leuven institute for AI, B-3000, Leuven, Belgium. C.V. acknowledges the financial support of ESA, BELSPO.-
dc.language.isoen-
dc.publisherIEEE-
dc.relation.ispartofseriesComputing in Cardiology Conference-
dc.titleControlled Breathing Effect on Respiration Quality Assessment Using Machine Learning Approaches-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedateSEP 12-15, 2021-
local.bibliographicCitation.conferencenameConference on Computing in Cardiology (CinC)-
local.bibliographicCitation.conferenceplaceBrno, CZECH REPUBLIC-
local.format.pages4-
local.bibliographicCitation.jcatC1-
dc.description.notesRozo, A (corresponding author), Katholieke Univ Leuven, Dept Elect Engn ESAT, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, Leuven, Belgium.-
dc.description.notesca.rozo2200@gmail.com-
local.publisher.place345 E 47TH ST, NEW YORK, NY 10017 USA-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.22489/CinC.2021.220-
dc.identifier.isi000821955000155-
dc.identifier.eissn2325-887X-
local.provider.typewosris-
local.bibliographicCitation.btitle2021 COMPUTING IN CARDIOLOGY (CINC)-
local.description.affiliation[Rozo, Andrea; Moeyersons, Jonathan; Morales, John; Van Huffel, Sabine; Varon, Carolina] Katholieke Univ Leuven, Dept Elect Engn ESAT, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, Leuven, Belgium.-
local.description.affiliation[Buil, Jeroen; van der Westen, Roberto Garcia; Groenendaal, Willemijn] Nederland Holst Ctr, Imec, Eindhoven, Netherlands.-
local.description.affiliation[Lijnen, Lien; Ruttens, David] Univ Hasselt, Hasselt, Belgium.-
local.description.affiliation[Smeets, Christophe; Ruttens, David] Ziekenhuis Oost Limburg, Genk, Belgium.-
local.description.affiliation[Jantzen, Sjors; Monpellier, Valerie] Nederlandse Obesitas Kliniek, Amsterdam, Netherlands.-
local.description.affiliation[Van Hoof, Chris] imec OnePlanet, Wageningen, Netherlands.-
local.description.affiliation[Varon, Carolina] Univ Libre Bruxelles, Serv Chim Phys, Brussels, Belgium.-
local.uhasselt.internationalyes-
item.contributorRozo, Andrea-
item.contributorBuil, Jeroen-
item.contributorMoeyersons, Jonathan-
item.contributorMorales, John-
item.contributorvan der Westen, Roberto Garcia-
item.contributorLijnen, Lien-
item.contributorSmeets, Christophe-
item.contributorJantzen, Sjors-
item.contributorMonpellier, Valerie-
item.contributorRUTTENS, David-
item.contributorVan Hoof , Chris-
item.contributorVan Huffel, Sabine-
item.contributorGroenendaal, Willemijn-
item.contributorVaron, Carolina-
item.fullcitationRozo, Andrea; Buil, Jeroen; Moeyersons, Jonathan; Morales, John; van der Westen, Roberto Garcia; Lijnen, Lien; Smeets, Christophe; Jantzen, Sjors; Monpellier, Valerie; RUTTENS, David; Van Hoof , Chris; Van Huffel, Sabine; Groenendaal, Willemijn & Varon, Carolina (2021) Controlled Breathing Effect on Respiration Quality Assessment Using Machine Learning Approaches. In: 2021 COMPUTING IN CARDIOLOGY (CINC), IEEE,.-
item.accessRightsRestricted Access-
item.fulltextWith Fulltext-
item.validationecoom 2023-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Controlled Breathing Effect on Respiration Quality Assessment Using Machine Learning Approaches.pdf
  Restricted Access
Published version285.66 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.