Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/379
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGalecki, Andrzej T.-
dc.contributor.authorTen Have, Thomas R.-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2004-10-25T12:03:59Z-
dc.date.available2004-10-25T12:03:59Z-
dc.date.issued2001-
dc.identifier.citationComputational Statistics and Data Analysis, 35(3). p. 265-281-
dc.identifier.issn0167-9473-
dc.identifier.urihttp://hdl.handle.net/1942/379-
dc.description.abstractIncomplete categorical data and latent class models play an important role in biostatistical and medical literature. The most common maximum likelihood procedure for accommodating these types of models is the EM algorithm. We present a faster alternative to these EM approaches that improves upon a recently introduced maximum likelihood-based alternative by Molenberghs and Goetghebeur (1997. J. Roy. Statist. Soc. Ser. B 59, 401–414) in two ways: by accommodating higher-dimensional problems via more time points in longitudinal problems and by employing a less tedious iteratively reweighted least-squares (IRLS) approach than the Newton–Raphson procedure used by MG. This IRLS approach also will facilitate the potential extension to models with random effects in the context of complete and incomplete categorical data and latent classes. We illustrate our method with a latent class application. As with the MG approach, we maximize the observed likelihood instead of the complete data likelihood under a multivariate generalized logistic model with composite link function. This results in a faster convergence rate than the EM algorithm, and allowing easily obtainable variance estimates. We illustrate the proposed estimation procedure using data from an HIV study involving four dichotomous tests measured on each individual, assuming a latent class disease variable with two levels.-
dc.description.sponsorshipAuthors are thankful to Drs. Stuart Baker and Mark Becker for their helpful comments and suggestions. Support for this research is in part by NIA grant No. P30 AG08808, P01 AG16699, and R29 CA531857, and by Belgian FWO-Vlaanderen Research Project “Sensitivity Analysis for Incomplete and Coarse Data”.-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.rights(C) 2001 Elsevier Science B.V. All rights reserved.-
dc.subjectMissing data-
dc.subjectCategorical data-
dc.subjectLongitudinal data-
dc.subject.othercategorical data; multivariate marginal logistic models; latent class models; incomplete data; coarsening-
dc.titleA simple and fast alternative to the EM algorithm for incomplete categorical data and latent class models-
dc.typeJournal Contribution-
dc.identifier.epage281-
dc.identifier.issue3-
dc.identifier.spage265-
dc.identifier.volume35-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/S0167-9473(00)00015-3-
dc.identifier.isi000166452000002-
item.fulltextWith Fulltext-
item.fullcitationGalecki, Andrzej T.; Ten Have, Thomas R. & MOLENBERGHS, Geert (2001) A simple and fast alternative to the EM algorithm for incomplete categorical data and latent class models. In: Computational Statistics and Data Analysis, 35(3). p. 265-281.-
item.contributorGalecki, Andrzej T.-
item.contributorTen Have, Thomas R.-
item.contributorMOLENBERGHS, Geert-
item.accessRightsRestricted Access-
item.validationecoom 2002-
crisitem.journal.issn0167-9473-
crisitem.journal.eissn1872-7352-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
a.pdf
  Restricted Access
Published version129.97 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.