Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3825
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDUMORTIER, Freddy-
dc.date.accessioned2007-11-29T14:16:57Z-
dc.date.available2007-11-29T14:16:57Z-
dc.date.issued1991-
dc.identifier.citationJOURNAL OF DIFFERENTIAL EQUATIONS, 94(2). p. 379-400-
dc.identifier.issn0022-0396-
dc.identifier.urihttp://hdl.handle.net/1942/3825-
dc.description.abstractIn the first part of the paper we introduce the “Normal transition function” for saddle connections of planar diffeomorphisms. It is a positive multiple of the usual transition function, but in its definition we do not need C1 -linearizing coordinates. Among other nice properties, it is found to be analytic when the diffeomorphism is. The second part of the paper deals with the existence of a modulus of stability for germs on 3 of homogeneous vector fields with a hyperbolic blowing-up. We show that inside a specific class of examples the modulus occurs for a sufficiently high degree.-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS-
dc.titleTransition functions and moduli of stability for 3-dimensional homogeneous vector-fields with a hyperbolic blowing-up-
dc.typeJournal Contribution-
dc.identifier.epage400-
dc.identifier.issue2-
dc.identifier.spage379-
dc.identifier.volume94-
local.format.pages22-
dc.description.notesDUMORTIER, F, LIMBURGS UNIV CENTRUM,UNIV CAMPUS,B-3590 DIEPENBEEK,BELGIUM.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/0022-0396(91)90097-S-
dc.identifier.isiA1991GU67500009-
item.contributorDUMORTIER, Freddy-
item.fullcitationDUMORTIER, Freddy (1991) Transition functions and moduli of stability for 3-dimensional homogeneous vector-fields with a hyperbolic blowing-up. In: JOURNAL OF DIFFERENTIAL EQUATIONS, 94(2). p. 379-400.-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.