Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/386
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorVERBEKE, Geert-
dc.contributor.authorTHIJS, Herbert-
dc.contributor.authorLESAFFRE, Emmanuel-
dc.contributor.authorKenward, Michael-
dc.date.accessioned2004-10-26T07:25:02Z-
dc.date.available2004-10-26T07:25:02Z-
dc.date.issued2001-
dc.identifier.citationComputational Statistics and Data Analysis, 37(1). p. 93-113-
dc.identifier.issn0167-9473-
dc.identifier.urihttp://hdl.handle.net/1942/386-
dc.description.abstractDiggle and Kenward (Appl. Statist. 43 (1994) 49) proposed a selection model for continuous longitudinal data subject to possible non-random dropout. It has provoked a large debate about the role for such models. The original enthusiasm was followed by skepticism about the strong but untestable assumption upon which this type of models invariably rests. Since then, the view has emerged that these models should ideally be made part of a sensitivity analysis. One of their examples is a set of data on mastitis in dairy cattle, about which they concluded that the dropout process was non-random. The same data were used in Kenward (Statist. Med. 17 (1998) 2723), who performed an informal sensitivity analysis. It thus presents an interesting opportunity for a formal sensitivity assessment, as proposed by Verbeke et al. (sensitivity analysis for non-random dropout: a local influence approach-
dc.description.sponsorshipWe thank Rod Little and Don Rubin for helpful comments. We gratefully acknowledge support from FWO-Vlaanderen Research Project “Sensitivity Analysis for Incomplete and Coarse Data” and from Vlaams Instituut voor de Bevordering van het Wetenschappelijk-Technologisch Onderzoek in de Industrie.-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.rights(C) 2001 Elsevier Science B.V. All rights reserved.-
dc.subjectMissing data-
dc.subjectLongitudinal data-
dc.subject.otherdropout; selection model; global influence; local influence; case deletion; sensitivity analysis-
dc.titleInfluence analysis to assess sensitivity of the dropout process-
dc.typeJournal Contribution-
dc.identifier.epage113-
dc.identifier.issue1-
dc.identifier.spage93-
dc.identifier.volume37-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/S0167-9473(00)00065-7-
dc.identifier.isi000170079000007-
item.validationecoom 2002-
item.contributorMOLENBERGHS, Geert-
item.contributorVERBEKE, Geert-
item.contributorTHIJS, Herbert-
item.contributorLESAFFRE, Emmanuel-
item.contributorKenward, Michael-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
item.fullcitationMOLENBERGHS, Geert; VERBEKE, Geert; THIJS, Herbert; LESAFFRE, Emmanuel & Kenward, Michael (2001) Influence analysis to assess sensitivity of the dropout process. In: Computational Statistics and Data Analysis, 37(1). p. 93-113.-
crisitem.journal.issn0167-9473-
crisitem.journal.eissn1872-7352-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
a.pdf
  Restricted Access
Published version239.93 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.