Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/38802
Title: Droplet size distribution, atomization mechanism and dynamics of dental aerosols
Authors: KAYAHAN , Emine
WU , Min
Van Gerven, Tom
Stijven, Lambert
BRAEKEN, Leen 
POLITIS, Constantinus 
LEBLEBICI , Mumin enis
Issue Date: 2022
Publisher: ELSEVIER SCI LTD
Source: JOURNAL OF AEROSOL SCIENCE, 166 (Art N° 106049)
Abstract: Since the outbreak of COVID-19 pandemic, maintaining safety in dental operations has challenged health care providers and policy makers. Studies on dental aerosols often focus on bacterial viability or particle size measurements inside dental offices during and after dental procedures, which limits their conclusions to specific cases. Fundamental understanding on atomization mechanism and dynamics of dental aerosols are needed while assessing the risks. Most dental instruments feature a build-in atomizer. Dental aerosols that are produced by ultrasonic or rotary atomization are considered to pose the highest risks. In this work, we aimed to characterize dental aerosols produced by both methods, namely by Mectron PIEZOSURGERY (R) and KaVo EXPERTtorque T. Droplet size distributions and velocities were measured with a high-speed camera and a rail system. By fitting the data to probability density distributions and using empirical equations to predict droplet sizes, we were able to postulate the main factors that determine droplet sizes. Both dental instruments had wide size distributions including small droplets. Droplet size distribution changed based on operational parameters such as liquid flow rate or air pressure. With a larger fraction of small droplets, rotary atomization poses a higher risk. With the measured velocities reaching up to 5 m s(-1), droplets can easily reach the dentist in a few seconds. Small droplets can evaporate completely before reaching the ground and can be suspended in the air for a long time. We suggest that relative humidity in dental offices are adjusted to 50% to prevent fast evaporation while maintaining comfort in the office. This can reduce the risk of disease transmission among patients. We recommend that dentists wear a face shield and N95/FFP2/KN95 masks instead of surgical masks. We believe that this work gives health-care professionals, policy makers and engineers who design dental instruments insights into a safer dental practice.
Notes: Leblebici, ME (corresponding author), Katholieke Univ Leuven, Dept Chem Engn, Ctr Ind Proc Technol, Agoralaan Bldg B, B-3590 Diepenbeek, Belgium.
muminenis.leblebici@kuleuven.be
Keywords: COVID-19;Dental aerosols;Airborne transmission;Droplet size distribution;PIEZOSURGERY;Dental drill
Document URI: http://hdl.handle.net/1942/38802
ISSN: 0021-8502
e-ISSN: 1879-1964
DOI: 10.1016/j.jaerosci.2022.106049
ISI #: 000858517200002
Rights: 2022 Elsevier Ltd. All rights reserved.
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
Droplet size distribution, atomization mechanism and dynamics of dental aerosols.pdfPublished version10.96 MBAdobe PDFView/Open
Show full item record

WEB OF SCIENCETM
Citations

4
checked on Apr 22, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.