Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/38882
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEspinosa, Laura-
dc.contributor.authorWijermans, Ariana-
dc.contributor.authorOrchard, Francisco-
dc.contributor.authorHohle, Michael-
dc.contributor.authorCzernichow, Thomas-
dc.contributor.authorCOLETTI, Pietro-
dc.contributor.authorHERMANS, Lisa-
dc.contributor.authorFAES, Christel-
dc.contributor.authorKissling, Esther-
dc.contributor.authorMollet, Thomas-
dc.date.accessioned2022-11-16T11:15:20Z-
dc.date.available2022-11-16T11:15:20Z-
dc.date.issued2022-
dc.date.submitted2022-11-14T15:16:58Z-
dc.identifier.citationEurosurveillance, 27 (39) (Art N° 2200177)-
dc.identifier.urihttp://hdl.handle.net/1942/38882-
dc.description.abstractBackground: The European Centre for Disease Prevention and Control (ECDC) systematically collates information from sources to rapidly detect early public health threats. The lack of a freely available, customisable and automated early warning tool using data from Twitter prompted the ECDC to develop epitweetr, which collects, geotocates and aggregates tweets generating signals and email alerts. Aim: This study aims to compare the performance of epitweetr to manually monitoring tweets for the purpose of early detecting public health threats. Methods: We calculated the general and specific positive predictive value (PPV) of signals generated by epitweetr between 19 October and 30 November 2020. Sensitivity, specificity, timeliness and accuracy and performance of tweet geolocation and signal detection algorithms obtained from epitweetr and the manual monitoring of 1,200 tweets were compared. Results: The epitweetr geolocation algorithm had an accuracy of 30.1% at national, and 25.9% at subnational levels. The signal detection algorithm had 3.0% general PPV and 74.6% specific PPV. Compared to manual monitoring, epitweetr had greater sensitivity (47.9% and 78.6%, respectively), and reduced PPV (97.9% and 74.6%, respectively). Median validation time difference between 16 common events detected by epitweetr and manual monitoring was -48.6 hours (IQR: -102.8 to -23.7). Conclusion: Epitweetr has shown sufficient performance as an early warning toot for public health threats using Twitter data. Since epitweetr is a free, open-source tool with configurable settings and a strong automated component, it is expected to increase in usability and usefulness to public health experts.-
dc.description.sponsorshipThis work was published as a preprint article on medRxiv (Espinosa L, Wijermans A, Orchard F, Höhle M, Czernichow T, Coletti P, et al. Epitweetr: Early warning of public health threats using Twitter data. medRxiv. 26 Mar 2021).-
dc.language.isoen-
dc.publisherEUR CENTRE DIS PREVENTION & CONTROL-
dc.rightsThis is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence and indicate if changes were made.-
dc.subject.otherTwitter-
dc.subject.otherearly warning-
dc.subject.otherepidemic intelligence-
dc.subject.othermachine learning-
dc.subject.otherpublic health-
dc.subject.otherAlgorithms-
dc.subject.otherData Collection-
dc.subject.otherHumans-
dc.subject.otherPublic Health-
dc.subject.otherSocial Media-
dc.titleEpitweetr: Early warning of public health threats using Twitter data-
dc.typeJournal Contribution-
dc.identifier.issue39-
dc.identifier.volume27-
local.format.pages9-
local.bibliographicCitation.jcatA1-
dc.description.notesEspinosa, L (corresponding author), European Ctr Dis Prevent & Control ECDC, Stockholm, Sweden.-
dc.description.noteslaura.espinosa@ecdc.europa.eu-
local.publisher.placeTOMTEBODAVAGEN 11A, STOCKHOLM, 171 83, SWEDEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr2200177-
dc.identifier.doi10.2807/1560-7917.ES.2022.27.39.2200177-
dc.identifier.pmid36177867-
dc.identifier.isi000870702900005-
dc.contributor.orcidOrchard, Francisco/0000-0001-5793-3301; FAES,-
dc.contributor.orcidChristel/0000-0002-1878-9869; Espinosa, Laura/0000-0003-0748-9657;-
dc.contributor.orcidThomas, Mollet/0000-0003-4963-2503-
local.provider.typewosris-
local.description.affiliation[Espinosa, Laura; Wijermans, Ariana; Mollet, Thomas] European Ctr Dis Prevent & Control ECDC, Stockholm, Sweden.-
local.description.affiliation[Orchard, Francisco; Czernichow, Thomas; Kissling, Esther] Epiconcept, Paris, France.-
local.description.affiliation[Hohle, Michael] Stockholm Univ, Stockholm, Sweden.-
local.description.affiliation[Czernichow, Thomas] Aleia, Paris, France.-
local.description.affiliation[Coletti, Pietro; Hermans, Lisa; Faes, Christel] Hasselt Univ, Hasselt, Belgium.-
local.description.affiliation[Mollet, Thomas] Int Federat Red Cross & Red Crescent Soc, Geneva, Switzerland.-
local.uhasselt.internationalyes-
item.validationecoom 2023-
item.contributorEspinosa, Laura-
item.contributorWijermans, Ariana-
item.contributorOrchard, Francisco-
item.contributorHohle, Michael-
item.contributorCzernichow, Thomas-
item.contributorCOLETTI, Pietro-
item.contributorHERMANS, Lisa-
item.contributorFAES, Christel-
item.contributorKissling, Esther-
item.contributorMollet, Thomas-
item.fullcitationEspinosa, Laura; Wijermans, Ariana; Orchard, Francisco; Hohle, Michael; Czernichow, Thomas; COLETTI, Pietro; HERMANS, Lisa; FAES, Christel; Kissling, Esther & Mollet, Thomas (2022) Epitweetr: Early warning of public health threats using Twitter data. In: Eurosurveillance, 27 (39) (Art N° 2200177).-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn1025-496X-
crisitem.journal.eissn1560-7917-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
eurosurv-27-39-5.pdfPublished version1.1 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.