Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/38915
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKUIJPERS, Bart-
dc.contributor.authorSOLIANI, Valeria-
dc.contributor.authorVAISMAN, Alejandro-
dc.date.accessioned2022-11-23T10:42:28Z-
dc.date.available2022-11-23T10:42:28Z-
dc.date.issued2022-
dc.date.submitted2022-10-26T15:59:23Z-
dc.identifier.citationChiusano, Silvia; Cerquitelli, Tania; Wrembel, Robert; Norvag, Kjetil; Catania, Barbara (Ed.). New Trends in Database and Information Systems, ADBIS 2022, Springer, p. 222 -231-
dc.identifier.isbn978-3-031-15742-4-
dc.identifier.issn1865-0929-
dc.identifier.urihttp://hdl.handle.net/1942/38915-
dc.description.abstractTransportation networks (e.g., river systems or road networks) equipped with sensors that collect data for several different purposes can be naturally modeled using graph databases. However, since networks can change over time, to represent these changes appropriately, a temporal graph data model is required. In this paper, we show that sensor-equipped transportation networks can be represented and queried using temporal graph databases and query languages. For this, we extend a recently introduced temporal graph data model and its high-level query language T-GQL to support time series in the nodes of the graph. We redefine temporal paths and study and implement a new kind of path, called Flow path. We take the Flanders' river system as a use case.-
dc.description.sponsorshipValeria Soliani and Alejandro Vaisman were partially supported by Project PICT 2017-1054, from the Argentinian Scientific Agency.-
dc.language.isoen-
dc.publisherSpringer-
dc.relation.ispartofseriesCommunications in Computer and Information Science-
dc.rights2022 Springer Nature Switzerland AG-
dc.subject.otherGraph databases-
dc.subject.otherTemporal databases-
dc.subject.otherSensor networks-
dc.titleModeling and Querying Sensor Networks Using Temporal Graph Databases-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsChiusano, Silvia-
local.bibliographicCitation.authorsCerquitelli, Tania-
local.bibliographicCitation.authorsWrembel, Robert-
local.bibliographicCitation.authorsNorvag, Kjetil-
local.bibliographicCitation.authorsCatania, Barbara-
local.bibliographicCitation.conferencedate2022, September 5-8-
local.bibliographicCitation.conferencenameADBIS 2022-
local.bibliographicCitation.conferenceplaceTurijn, Italie-
dc.identifier.epage231-
dc.identifier.spage222-
dc.identifier.volume1652-
local.format.pages10-
local.bibliographicCitation.jcatC1-
local.publisher.placeTurin, Italy-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr1652-
dc.identifier.doi10.1007/978-3-031-15743-1_21-
dc.identifier.isi000892609000021-
dc.identifier.eissn1865-0937-
local.provider.typePdf-
local.bibliographicCitation.btitleNew Trends in Database and Information Systems, ADBIS 2022-
local.dataset.doihttps://doi.org/10.1007/978-3-031-15743-1_21-
local.uhasselt.internationalyes-
item.validationecoom 2023-
item.contributorKUIJPERS, Bart-
item.contributorSOLIANI, Valeria-
item.contributorVAISMAN, Alejandro-
item.fullcitationKUIJPERS, Bart; SOLIANI, Valeria & VAISMAN, Alejandro (2022) Modeling and Querying Sensor Networks Using Temporal Graph Databases. In: Chiusano, Silvia; Cerquitelli, Tania; Wrembel, Robert; Norvag, Kjetil; Catania, Barbara (Ed.). New Trends in Database and Information Systems, ADBIS 2022, Springer, p. 222 -231.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
978-3-031-15743-1_21.pdf
  Restricted Access
Published version2.29 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.