Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/38938
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKoorn, Jelmer J.-
dc.contributor.authorLu, Xixi-
dc.contributor.authorLeopold, Henrik-
dc.contributor.authorMARTIN, Niels-
dc.contributor.authorVerboven, Sam-
dc.contributor.authorReijers, Hajo A.-
dc.date.accessioned2022-11-28T15:49:32Z-
dc.date.available2022-11-28T15:49:32Z-
dc.date.issued2022-
dc.date.submitted2022-11-27T10:34:06Z-
dc.identifier.citationProceedings of the 2022 International Conference on Process Mining,-
dc.identifier.isbn9798350397147-
dc.identifier.urihttp://hdl.handle.net/1942/38938-
dc.description.abstractAn important part of healthcare decision making is to understand how certain actions relate to desired and undesired outcomes. One key challenge is to deal with confounding variables , i.e., variables that influence the relation between actions and outcomes. Existing techniques aim to uncover the underlying statistical relations between actions and outcomes, but either do not account for confounding variables or only consider the process or case level instead of the event level. Therefore, this paper proposes a novel relation mining approach for healthcare processes that 1) explicitly accounts for confounding variables at the event level, and 2) transparently communicates the effect of the confounding variables to the user. We demonstrate the applicability and importance of our approach using two evaluation experiments. We use a real-world healthcare dataset to show that the identified relations indeed provide important input for decision making in healthcare processes. We use a synthetic dataset to illustrate the importance of our approach in the general setting of causal model estimation.-
dc.description.sponsorshipThis research was supported by the NWOTACTICS project (628.011.004) and Lunet Zorg in the Nether-lands. We would also like to thank the experts from the LunetZorg for their valuable assistance and feedback-
dc.language.isoen-
dc.publisherIEEE-
dc.subject.otherprocess mining-
dc.subject.otherstatistical relations-
dc.subject.otherconfounding variables-
dc.subject.otherhealthcare-
dc.titleMining statistical relations for better decision making in healthcare processes-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedateOctober 23 to October 28, 2022-
local.bibliographicCitation.conferencename4th International Conference on Process Mining (ICPM 2022)-
local.bibliographicCitation.conferenceplaceBolzano, Italy-
dc.identifier.epage39-
dc.identifier.spage32-
local.format.pages8-
local.bibliographicCitation.jcatC1-
local.publisher.place345 E 47TH ST, NEW YORK, NY 10017 USA-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1109/ICPM57379.2022.9980719-
dc.identifier.isi000907067500004-
local.provider.typePdf-
local.bibliographicCitation.btitleProceedings of the 2022 4th International Conference on Process Mining (ICPM)-
local.uhasselt.internationalyes-
item.accessRightsRestricted Access-
item.fullcitationKoorn, Jelmer J.; Lu, Xixi; Leopold, Henrik; MARTIN, Niels; Verboven, Sam & Reijers, Hajo A. (2022) Mining statistical relations for better decision making in healthcare processes. In: Proceedings of the 2022 International Conference on Process Mining,.-
item.fulltextWith Fulltext-
item.contributorKoorn, Jelmer J.-
item.contributorLu, Xixi-
item.contributorLeopold, Henrik-
item.contributorMARTIN, Niels-
item.contributorVerboven, Sam-
item.contributorReijers, Hajo A.-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Manuscript DocServer.pdf
  Restricted Access
Peer-reviewed author version344.65 kBAdobe PDFView/Open    Request a copy
10.1109_icpm57379.2022.9980719.pdf
  Restricted Access
Published version834.16 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.