Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3900
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFIDDELAERS, P-
dc.contributor.authorDUMORTIER, Freddy-
dc.date.accessioned2007-11-29T15:33:52Z-
dc.date.available2007-11-29T15:33:52Z-
dc.date.issued1991-
dc.identifier.citationTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 326(1). p. 101-126-
dc.identifier.issn0002-9947-
dc.identifier.urihttp://hdl.handle.net/1942/3900-
dc.description.abstractThe first chapter deals with singularities occurring in quadratic planar vector fields. We make distinction between singularities which as a general system are of finite codimension and singularities which are of infinite codimension in the sense that they are nonisolated, or Hamiltonian, or integrable, or that they have an axis of symmetry after a linear coordinate change or that they can be approximated by centers. In the second chapter we provide quadratic models for all the known versal k-parameter unfoldings with k = 1, 2, 3, except for the nilpotent focus which cannot occur as a quadratic system. We finally show that a certain type of elliptic points of codimension 4 does not have a quadratic versal unfolding.-
dc.language.isoen-
dc.publisherAMER MATHEMATICAL SOC-
dc.subject.otherQUADRATIC PLANAR VECTOR FIELDS; SINGULARITIES; CODIMENSION; VERSAL UNFOLDINGS; BIFURCATIONS-
dc.titleQuadratic models for generic local 3-parameter bifurcations on the plane-
dc.typeJournal Contribution-
dc.identifier.epage126-
dc.identifier.issue1-
dc.identifier.spage101-
dc.identifier.volume326-
local.format.pages26-
dc.description.notesDUMORTIER, F, LIMBURGS UNIV CENTRUM,UNIV CAMPUS,B-3590 DIEPENBEEK,BELGIUM.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isiA1991GA11700004-
item.contributorFIDDELAERS, P-
item.contributorDUMORTIER, Freddy-
item.accessRightsClosed Access-
item.fullcitationFIDDELAERS, P & DUMORTIER, Freddy (1991) Quadratic models for generic local 3-parameter bifurcations on the plane. In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 326(1). p. 101-126.-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.