Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3913
Title: SEMIGROUP ALGEBRAS AND DIRECT SUMS OF DOMAINS
Authors: DECRUYENAERE, F
JESPERS, E
WAUTERS, Paul 
Issue Date: 1991
Publisher: ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS
Source: JOURNAL OF ALGEBRA, 138(2). p. 505-514
Abstract: Let k be a field and S a commutative semigroup. Assume the semigroup algebra k[S] has an identity. We characterize those semigroup algebras which are direct sums of domains. As applications, we deduce necessary and sufficient conditions for a torsion-free semigroup algebra to a Krull order, a Gaussian ring, or a hereditary Noetherian ring.
Notes: MEM UNIV NEWFOUNDLAND,DEPT MATH,ST JOHNS A1C 5S7,NEWFOUNDLAND,CANADA. ECON HOGESCH LIMBURG,B-3610 DIEPENBEEK,BELGIUM. LIMBURGS UNIV CENTRUM,B-3610 DIEPENBEEK,BELGIUM.DECRUYENAERE, F, KATHOLIEKE UNIV LEUVEN,DEPT WISKUNDE,CELESTIJNENLAAN 200B,B-3001 LOUVAIN,BELGIUM.
Document URI: http://hdl.handle.net/1942/3913
DOI: 10.1016/0021-8693(91)90184-A
ISI #: A1991FL15300012
Type: Journal Contribution
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

3
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

4
checked on May 13, 2022

Page view(s)

42
checked on May 16, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.