Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/39251
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN LIMPT, Luc-
dc.contributor.authorCOMPERNOLLE, Tine-
dc.contributor.authorLIZIN, Sebastien-
dc.date.accessioned2023-01-16T15:27:30Z-
dc.date.available2023-01-16T15:27:30Z-
dc.date.issued2022-
dc.date.submitted2022-12-16T15:39:05Z-
dc.identifier.citation17th conference on Sustainable Development of Energy, Water and Environment Systems, Paphos, Cyprus, 06/11/2022 - 10/11/2022-
dc.identifier.urihttp://hdl.handle.net/1942/39251-
dc.description.abstractDue to climate change, cities are facing major environmental challenges, like the urban heat island effect, loss of biodiversity and ecosystems, and flood risk. Nature-based solutions (NBS) harness the power of nature to adapt to and mitigate global warming’s adverse outcomes. Yet, cities are confronted with barriers to the implementation of NBS. The benefits of NBS do not result in direct revenues or cash flows. Moreover, city budgets often do not have the required resources to provide for extensive urban infrastructure. Alternative ways of financing are therefore being sought, including value capturing, impact financing and crowdfunding via initial coin offerings (ICO). However, it is unclear whether such alternative financing affects the economic feasibility of the underlying investments. In the existing literature, there are several studies that apply economic evaluation techniques to analyze the feasibility of investments in NBS. However, there is no structured overview of how economic feasibility studies can encourage investment in NBS. To fill this gap, this paper examines how the economic feasibility of NBS is currently assessed, whether and how non-monetary benefits are addressed, as well as uncertainty issues, and to what extent policy measures are proposed to encourage investment in NBS. In doing so, we adopt a systematic review approach by applying the framework of Reporting Standards for Systematic Evidence Syntheses (ROSES). This framework allows for a structured, transparent, and replicable review of the scientific literature. We contribute to the existing literature by providing an overview of how current studies value non-monetary benefits, integrate flexibility and adaptive management options, and assess alternative financing instruments to capture the benefits of NBS and stimulate the investment decision.-
dc.description.sponsorshipFWO S006422N-
dc.language.isoen-
dc.titleThe decision to invest in nature-based solutions from an environmental economic and financial perspective: a systematic review.-
dc.typeConference Material-
local.bibliographicCitation.conferencedate06/11/2022 - 10/11/2022-
local.bibliographicCitation.conferencename17th conference on Sustainable Development of Energy, Water and Environment Systems-
local.bibliographicCitation.conferenceplacePaphos, Cyprus-
local.format.pages19-
local.bibliographicCitation.jcatC2-
dc.relation.referencesREFERENCES Ab Azis, S. S., & Zulkifli, N. A. A. (2021). Green roof for sustainable urban flash flood control via cost benefit approach for local authority. URBAN FORESTRY & URBAN GREENING, 57. https://doi.org/10.1016/j.ufug.2020.126876 Albiero, D., da Silva, M. A. D., Melo, R. P., Garcia, A. P., Praciano, A. C., Fernandes, F. R. B., Monteiro, L. de A., Chioderoli, C. A., da Silva, A. O., & Filho, J. A. D. B. (2018). Economic Feasibility of Underwater Adduction of Rivers for Metropolises in Semiarid Coastal Environments: Case Studies. Water 2018, Vol. 10, Page 215, 10(2), 215. https://doi.org/10.3390/W10020215 Alonso, E. G., Gómez, J. R., Diáz, C. Á., Simal, P. D., & Solana, M. (2016). Design criteria for flood-defense structures based on probabilistic cost-benefit optimization with value at risk (VaR) methods. Application to the Choluteca River in Tegucigalpa (Honduras). E3S Web of Conferences, 7, 20001. https://doi.org/10.1051/E3SCONF/20160720001 Aulong, S., Bouzit, M., & Dorfliger, N. (2009). Cost-Effectiveness Analysis of Water Management Measures in Two River Basins of Jordan and Lebanon. WATER RESOURCES MANAGEMENT, 23(4), 731–753. https://doi.org/10.1007/s11269-008-9297-x Axelsson, C., Giove, S., & Soriani, S. (2021). Urban Pluvial Flood Management Part 1: Implementing an AHP-TOPSIS Multi-Criteria Decision Analysis Method for Stakeholder Integration in Urban Climate and Stormwater Adaptation. WATER, 13(17). https://doi.org/10.3390/w13172422 Bai, X., Dawson, R. J., Ürge-Vorsatz, D., Delgado, G. C., Salisu Barau, A., Dhakal, S., Dodman, D., Leonardsen, L., Masson-Delmotte, V., Roberts, D. C., & Schultz, S. (2018). Six research priorities for cities and climate change. Nature (London), 555(7694), 23–25. https://doi.org/10.1038/d41586-018-02409-z Bayulken, B., Huisingh, D., & Fisher, P. M. J. (2021). How are nature based solutions helping in the greening of cities in the context of crises such as climate change and pandemics? A comprehensive review. Journal of Cleaner Production, 288, 125569. https://doi.org/10.1016/j.jclepro.2020.125569 Belleflamme, P., Lambert, T., & Schwienbacher, A. (2013). Individual crowdfunding practices. Venture Capital (London), 15(4), 313–333. https://doi.org/10.1080/13691066.2013.785151 Berto, R., Stival, C. A., & Rosato, P. (2018). Enhancing the environmental performance of industrial settlements: An economic evaluation of extensive green roof competitiveness. BUILDING AND ENVIRONMENT, 127, 58–68. https://doi.org/10.1016/j.buildenv.2017.10.032 Boons, F., & Lüdeke-Freund, F. (2013). Business models for sustainable innovation: state-of-the-art and steps towards a research agenda. Journal of Cleaner Production, 45, 9–19. https://doi.org/10.1016/J.JCLEPRO.2012.07.007 Bozali, N. (2020). Assessment of the soil protection function of forest ecosystems using GIS-based Multi-Criteria Decision Analysis: A case study in Ad yaman, Turkey. GLOBAL ECOLOGY AND CONSERVATION, 24. https://doi.org/10.1016/j.gecco.2020.e01271 Brest, P., & Born, K. (2013). When Can Impact Investing Create Real Impact? Stanford Social Innovation Review, 11(4), 22. Bulkeley, H. (2013). Cities and climate change. Routledge. Calizaya, A., Meixner, O., Bengtsson, L., & Berndtsson, R. (2010). Multi-criteria Decision Analysis (MCDA) for Integrated Water Resources Management (IWRM) in the Lake Poopo Basin, Bolivia. WATER RESOURCES MANAGEMENT, 24(10), 2267–2289. https://doi.org/10.1007/s11269-009-9551-x Chapman, S., Watson, J. E. M., Salazar, A., Thatcher, M., & McAlpine, C. A. (2017). The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecology, 32(10), 1921–1935. https://doi.org/10.1007/s10980-017-0561-4 Chausson, A., Turner, B., Seddon, D., Chabaneix, N., Girardin, C. A. J., Kapos, V., Key, I., Roe, D., Smith, A., Woroniecki, S., & Seddon, N. (2020). Mapping the effectiveness of nature‐based solutions for climate change adaptation. Global Change Biology, 26(11), 6134–6155. https://doi.org/10.1111/gcb.15310 CHAVA, S., & ROBERTS, M. R. (2008). How Does Financing Impact Investment? The Role of Debt Covenants. The Journal of Finance (New York), 63(5), 2085–2121. https://doi.org/10.1111/j.1540-6261.2008.01391.x Cilliers, E. J. (2019). Reflecting on Green Infrastructure and Spatial Planning in Africa: The Complexities, Perceptions, and Way Forward. Sustainability 2019, Vol. 11, Page 455, 11(2), 455. https://doi.org/10.3390/SU11020455 Civeira, G., Lado Liñares, M., Vidal Vazquez, E., & Paz González, A. (2020). Ecosystem Services and Economic Assessment of Land Uses in Urban and Periurban Areas. Environmental Management, 65(3), 355–368. https://doi.org/10.1007/S00267-020-01257-W/TABLES/5 Claus, K., & Rousseau, S. (2012). Public versus private incentives to invest in green roofs: A cost benefit analysis for Flanders. URBAN FORESTRY & URBAN GREENING, 11(4), 417–425. https://doi.org/10.1016/j.ufug.2012.07.003 Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (2016). Nature-based solutions to address global societal challenges. IUCN: Gland, Switzerland, 97, 2016–2036. Cole, J., Sharvelle, S., Grigg, N., Pivo, G., & Haukaas, J. (2018). Collaborative, Risk-Informed, Triple Bottom Line, Multi-Criteria Decision Analysis Planning Framework for Integrated Urban Water Management. WATER, 10(12). https://doi.org/10.3390/w10121722 Cousins, J. J., & Hill, D. T. (2021). Green infrastructure, stormwater, and the financialization of municipal environmental governance. Journal of Environmental Policy & Planning, 1–18. Coxon, C., Gammie, G., & Cassin, J. (2021). Mobilizing funding for nature-based solutions: Peru’s drinking water tariff. In Nature-based Solutions and Water Security (pp. 241–262). Elsevier. Davies, H. J., Doick, K. J., Hudson, M. D., Schaafsma, M., Schreckenberg, K., & Valatin, G. (2018). Business attitudes towards funding ecosystem services provided by urban forests. ECOSYSTEM SERVICES, 32, 159–169. https://doi.org/10.1016/j.ecoser.2018.07.006 Davies, H. J., Doick, K. J., Hudson, M. D., & Schreckenberg, K. (2017). Challenges for tree officers to enhance the provision of regulating ecosystem services from urban forests. Environmental Research, 156, 97–107. https://doi.org/10.1016/J.ENVRES.2017.03.020 Dodman, D. M., Hayward, B., Pelling, M., Broto, V., Chow, W., Chu, E., Dawson, R., Khirfan, L., McPherson, T., Prakash, A., Zheng, Y., Ziervogel, G., Archer, D., Bertolin, C., Brail, S., Cartwright, A., Chester, M., Colenbrander, S., Dhar, T., & Westman, L. (2022). Cities, Settlements and Key Infrastructure. Escobedo, P. J., Wagner, J. E., Nowak, D. J., de la Maza, C. L., Rodriguez, M., & Crane, D. E. (2008). Analyzing the cost effectiveness of Santiago, Chile’s policy of using urban forests to improve air quality. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 86(1), 148–157. https://doi.org/10.1016/j.jenvman.2006.11.029 Fan, X. Z., & Matsumoto, T. (2019). GIS-Based Social Cost-Benefit Analysis on Integrated Urban Water Management in China: A Case Study of Sponge City in Harbin. SUSTAINABILITY, 11(19). https://doi.org/10.3390/su11195527 Fraga, J. P. R., Okumura, C. K., Guimaraes, L. F., de Arruda, R. N., Becker, B. R., de Oliveira, A. K. B., Verol, A. P., & Miguez, M. G. (2022). Cost-benefit analysis of sustainable drainage systems considering ecosystems services benefits: case study of canal do mangue watershed in Rio de Janeiro city, Brazil. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 24(2), 695–712. https://doi.org/10.1007/s10098-021-02221-w Frantzeskaki, N., McPhearson, T., Collier, M. J., Kendal, D., Bulkeley, H., Dumitru, A., Walsh, C., Noble, K., van Wyk, E., Ordóñez, C., Oke, C., & Pintér, L. (2019). Nature-based solutions for urban climate change adaptation: Linking science, policy, and practice communities for evidence-based decision-making. BioScience, 69(6), 455–466. https://doi.org/10.1093/biosci/biz042 Gao, X., Xu, W., Hou, Y., & Ouyang, Z. (2020). Market-based instruments for ecosystem services: framework and case study in Lishui City, China. Ecosystem Health and Sustainability, 6(1), 1835445. https://doi.org/10.1080/20964129.2020.1835445 Gonzalez-Viar, M., Diez-Montero, R., Molinos-Senante, M., De-Florio, L., Esteban-Garcia, A. L., Sala-Garrido, R., Hernandez-Sancho, F., & Tejero, I. (2016). Cost-effectiveness analysis of sewer mining versus centralized wastewater treatment: Case study of the Arga river basin, Spain. URBAN WATER JOURNAL, 13(3), 321–330. https://doi.org/10.1080/1573062X.2014.991742 Greenhalgh, S., Samarasinghe, O., Curran-Cournane, F., Wright, W., & Brown, P. (2017). Using ecosystem services to underpin cost-benefit analysis: Is it a way to protect finite soil resources? ECOSYSTEM SERVICES, 27, 1–14. https://doi.org/10.1016/j.ecoser.2017.07.005 Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. v, & Smith, P. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, 114(44), 11645–11650. Guo, T. J., Englehardt, J. D., & Fallon, H. J. (2016). Modeling the Economic Feasibility of Large-Scale Net-Zero Water Management: A Case Study. WATER ENVIRONMENT RESEARCH, 88(9), 811–823. https://doi.org/10.2175/106143016X14609975747487 Hong, C. Y., & Chang, H. J. (2020). Residents’ perception of flood risk and urban stream restoration using multi-criteria decision analysis. RIVER RESEARCH AND APPLICATIONS, 36(10), 2078–2088. https://doi.org/10.1002/rra.3728 Jabareen, Y. (2013). Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities, 31, 220–229. https://doi.org/10.1016/J.CITIES.2012.05.004 Jiang, M. M., Chen, Z. M., Zhang, B., Li, S. C., Xia, X. H., Zhou, S. Y., & Zhou, J. B. (2010). Ecological Economic Evaluation Based on Emergy as Embodied Cosmic Exergy: A Historical Study for the Beijing Urban Ecosystem 1978-2004. ENTROPY, 12(7), 1696–1720. https://doi.org/10.3390/e12071696 Jiang, Y., & Swallow, S. K. (2017). Impact Fees Coupled With Conservation Payments to Sustain Ecosystem Structure: A Conceptual and Numerical Application at the Urban-Rural Fringe. Ecological Economics, 136, 136–147. https://doi.org/10.1016/J.ECOLECON.2017.02.007 Joslin, A. J., & Jepson, W. E. (2018). Territory and authority of water fund payments for ecosystem services in Ecuador’s Andes. GEOFORUM, 91, 10–20. https://doi.org/10.1016/j.geoforum.2018.02.016 Kabisch, N., Frantzeskaki, N., Pauleit, S., Naumann, S., Davis, M., Artmann, M., Haase, D., Knapp, S., Korn, H., Stadler, J., Zaunberger, K., & Bonn, A. (2016). Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society, 21(2), 39. https://doi.org/10.5751/ES-08373-210239 Karymbalis, E., Andreou, M., Batzakis, D. v, Tsanakas, K., & Karalis, S. (2021). Integration of GIS-Based Multicriteria Decision Analysis and Analytic Hierarchy Process for Flood-Hazard Assessment in the Megalo Rema River Catchment (East Attica, Greece). SUSTAINABILITY, 13(18). https://doi.org/10.3390/su131810232 Kati, V., & Jari, N. (2016). Bottom-up thinking—Identifying socio-cultural values of ecosystem services in local blue–green infrastructure planning in Helsinki, Finland. Land Use Policy, 50, 537–547. https://doi.org/10.1016/J.LANDUSEPOL.2015.09.031 Ko, J. Y., Day, J. W., Lane, R. R., & Day, J. N. (2004). A comparative evaluation of money-based and energy-based cost-benefit analyses of tertiary municipal wastewater treatment using forested wetlands vs. sand filtration in Louisiana. ECOLOGICAL ECONOMICS, 49(3), 331–347. https://doi.org/10.1016/j.ecolecon.2004.01.011 Konasova, S. (2019). Cost-Benefit Analysis Of Green Roofs In Densely Built-Up Areas. Proceedings of Economics and Finance Conferences, 9512199. Koroxenidis, E., & Theodosiou, T. (2021). Comparative environmental and economic evaluation of green roofs under Mediterranean climate conditions-Extensive green roofs a potentially preferable solution. JOURNAL OF CLEANER PRODUCTION, 311. https://doi.org/10.1016/j.jclepro.2021.127563 Kumar, P., & Kumar, P. (2021). Climate Change and Cities: Challenges Ahead. Frontiers in Sustainable Cities, 3. https://doi.org/10.3389/frsc.2021.645613 Langemeyer, J., Gomez-Baggethun, E., Haase, D., Scheuer, S., & Elmqvist, T. (2016). Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). ENVIRONMENTAL SCIENCE & POLICY, 62, 45–56. https://doi.org/10.1016/j.envsci.2016.02.013 Langemeyer, J., Wedgwood, D., McPhearson, T., Baro, F., Madsen, A. L., & Barton, D. N. (2020). Creating urban green infrastructure where it is needed - A spatial ecosystem service-based decision analysis of green roofs in Barcelona. SCIENCE OF THE TOTAL ENVIRONMENT, 707. https://doi.org/10.1016/j.scitotenv.2019.135487 le Coent, P., Graveline, N., Altamirano, M. A., Arfaoui, N., Benitez-Avila, C., Biffin, T., Calatrava, J., Dartee, K., Douai, A., Gnonlonfin, A., Hérivaux, C., Marchal, R., Moncoulon, D., & Piton, G. (2021). Is-it worth investing in NBS aiming at reducing water risks? Insights from the economic assessment of three European case studies. Nature-Based Solutions, 1, 100002. https://doi.org/10.1016/J.NBSJ.2021.100002 Lee, M., & Jung, I. (2016). Assessment of an urban stream restoration project by cost-benefit analysis: The case of Cheonggyecheon stream in Seoul, South Korea. KSCE JOURNAL OF CIVIL ENGINEERING, 20(1), 152–162. https://doi.org/10.1007/s12205-015-0633-4 Liberalesso, T., Oliveira Cruz, C., Matos Silva, C., & Manso, M. (2020). Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land Use Policy, 96, 104693. https://doi.org/10.1016/J.LANDUSEPOL.2020.104693 Liu, G.-Y., Yang, Z., & Chen, B. (2010). Emergy-based Ecological Economic Evaluation of Beijing Urban Ecosystem. International Congress on Environmental Modelling and Software. https://scholarsarchive.byu.edu/iemssconference/2010/all/382 Liu, H. X., Wang, Y. T., Zhang, C., Chen, A. S., & Fu, G. T. (2018). Assessing real options in urban surface water flood risk management under climate change. NATURAL HAZARDS, 94(1), 1–18. https://doi.org/10.1007/s11069-018-3349-1 Locatelli, L., Guerrero, M., Russo, B., Martinez-Gomariz, E., Sunyer, D., & Martinez, M. (2020). Socio-Economic Assessment of Green Infrastructure for Climate Change Adaptation in the Context of Urban Drainage Planning. SUSTAINABILITY, 12(9). https://doi.org/10.3390/su12093792 Ma, W. W., Xue, X. P., Liu, G., & Zhou, R. Y. (2018). Techno-economic evaluation of a community-based hybrid renewable energy system considering site-specific nature. ENERGY CONVERSION AND MANAGEMENT, 171, 1737–1748. https://doi.org/10.1016/j.enconman.2018.06.109 Madsen, S. H. J., & Hansen, T. (2019). Cities and climate change - examining advantages and challenges of urban climate change experiments. European Planning Studies, 27(2), 282–299. https://doi.org/10.1080/09654313.2017.1421907 Maehle, N. (2020). Sustainable crowdfunding: insights from the project perspective. Baltic Journal of Management, 15(2), 281–302. https://doi.org/10.1108/BJM-02-2019-0079/FULL/XML Mahdiyar, A., Tabatabaee, S., Sadeghifam, A. N., Mohandes, S. R., Abdullah, A., & Meynagh, M. M. (2016). Probabilistic private cost-benefit analysis for green roof installation: A Monte Carlo simulation approach. URBAN FORESTRY & URBAN GREENING, 20, 317–327. https://doi.org/10.1016/j.ufug.2016.10.001 Mayor, B., Toxopeus, H., McQuaid, S., Croci, E., Lucchitta, B., Reddy, S. E., Egusquiza, A., Altamirano, M. A., Trumbic, T., Tuerk, A., García, G., Feliu, E., Malandrino, C., Schante, J., Jensen, A., & López Gunn, E. (2021). State of the Art and Latest Advances in Exploring Business Models for Nature-Based Solutions. Sustainability 2021, Vol. 13, Page 7413, 13(13), 7413. https://doi.org/10.3390/SU13137413 Mell, I. (2018). Financing the future of green infrastructure planning: alternatives and opportunities in the UK. LANDSCAPE RESEARCH, 43(6), 751–768. https://doi.org/10.1080/01426397.2017.1390079 Mell, I. (2021). ‘But who’s going to pay for it?’Contemporary approaches to green infrastructure financing, development and governance in London, UK. Journal of Environmental Policy & Planning, 1–18. Mell, I., & Whitten, M. (2021). Access to Nature in a Post Covid-19 World: Opportunities for Green Infrastructure Financing, Distribution and Equitability in Urban Planning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 18(4). https://doi.org/10.3390/ijerph18041527 Miles, L., Agra, R., Sengupta, S., Vidal, A., & Dickson, B. (2021). Nature-based solutions for climate change mitigation. Mollick, E. (2014). The dynamics of crowdfunding: An exploratory study. Journal of Business Venturing, 29(1), 1–16. https://doi.org/10.1016/j.jbusvent.2013.06.005 Narayan, S., Beck, M. W., Reguero, B. G., Losada, I. J., van Wesenbeeck, B., Pontee, N., Sanchirico, J. N., Ingram, J. C., Lange, G. M., & Burks-Copes, K. A. (2016). The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PloS One, 11(5), e0154735–e0154735. https://doi.org/10.1371/journal.pone.0154735 Nations, U. (2019). World Urbanization Prospects: the 2018 Revision. United Nations Department of Economic and Social Affairs. Population Division, New York. Nesshöver, C., Assmuth, T., Irvine, K. N., Rusch, G. M., Waylen, K. A., Delbaere, B., Haase, D., Jones-Walters, L., Keune, H., Kovacs, E., Krauze, K., Külvik, M., Rey, F., van Dijk, J., Vistad, O. I., Wilkinson, M. E., & Wittmer, H. (2017). The science, policy and practice of nature-based solutions: An interdisciplinary perspective. In Science of the Total Environment (Vol. 579, pp. 1215–1227). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2016.11.106 Nordstrom, E. M., Eriksson, L. O., & Ohman, K. (2010). Integrating multiple criteria decision analysis in participatory forest planning: Experience from a case study in northern Sweden. FOREST POLICY AND ECONOMICS, 12(8), 562–574. https://doi.org/10.1016/j.forpol.2010.07.006 Nordstrom, E. M., Eriksson, L. O., & Ohman, K. (2011). Multiple Criteria Decision Analysis with Consideration to Place-specific Values in Participatory Forest Planning. SILVA FENNICA, 45(2), 253–265. https://doi.org/10.14214/sf.116 Nuthammachot, N., & Stratoulias, D. (2021). Multi-criteria decision analysis for forest fire risk assessment by coupling AHP and GIS: method and case study. ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 23(12), 17443–17458. https://doi.org/10.1007/s10668-021-01394-0 Nyarko, I., Nwaogu, C., Miroslav, H., & Peseu, P. O. (2021). Socio-Economic Analysis of Wood Charcoal Production as a Significant Output of Forest Bioeconomy in Africa. FORESTS, 12(5). https://doi.org/10.3390/f12050568 Osaka, S., Bellamy, R., & Castree, N. (2021). Framing “nature‐based” solutions to climate change. Wiley Interdisciplinary Reviews. Climate Change, 12(5), n/a. https://doi.org/10.1002/wcc.729 Ossa-Moreno, J., Smith, K. M., & Mijic, A. (2017). Economic analysis of wider benefits to facilitate SuDS uptake in London, UK. SUSTAINABLE CITIES AND SOCIETY, 28, 411–419. https://doi.org/10.1016/j.scs.2016.10.002 O’Sullivan, F., Mell, I., & Clement, S. (2020). Novel Solutions or Rebranded Approaches: Evaluating the Use of Nature-Based Solutions (NBS) in Europe. Frontiers in Sustainable Cities, 2. https://doi.org/10.3389/frsc.2020.572527 Pacione, M. (2009). U Ban Geography: A Global Perspective. Routledge. Perini, K., & Rosasco, P. (2013). Cost-benefit analysis for green facades and living wall systems. BUILDING AND ENVIRONMENT, 70, 110–121. https://doi.org/10.1016/j.buildenv.2013.08.012 Qiu, Y. Z., Schertzer, D., & Tchiguirinskaia, I. (2021). Assessing cost-effectiveness of nature-based solutions scenarios: Integrating hydrological impacts and life cycle costs. JOURNAL OF CLEANER PRODUCTION, 329. https://doi.org/10.1016/j.jclepro.2021.129740 Ramyar, R., Ackerman, A., & Johnston, D. M. (2021). Adapting cities for climate change through urban green infrastructure planning. Cities, 117, 103316. https://doi.org/10.1016/j.cities.2021.103316 Richards, D. R., & Thompson, B. S. (2019). Urban ecosystems: A new frontier for payments for ecosystem services. People and Nature, 1(2), 249–261. https://doi.org/10.1002/PAN3.20/SUPPINFO Rink, D., & Schmidt, C. (2021). Afforestation of Urban Brownfields as a Nature-Based Solution. Experiences from a Project in Leipzig (Germany). Land 2021, Vol. 10, Page 893, 10(9), 893. https://doi.org/10.3390/LAND10090893 Sangkakool, T., Techato, K., Zaman, R., & Brudermann, T. (2018). Prospects of green roofs in urban Thailand - A multi-criteria decision analysis. JOURNAL OF CLEANER PRODUCTION, 196, 400–410. https://doi.org/10.1016/j.jclepro.2018.06.060 Sarabi, S. E., Han, Q., Romme, A. G. L., de Vries, B., & Wendling, L. (2019). Key Enablers of and Barriers to the Uptake and Implementation of Nature-Based Solutions in Urban Settings: A Review. Resources 2019, Vol. 8, Page 121, 8(3), 121. https://doi.org/10.3390/RESOURCES8030121 Scafetta, N. (2011). Understanding the complexity of the Levy-walk nature of human mobility with a multi-scale cost/benefit model. CHAOS, 21(4). https://doi.org/10.1063/1.3645184 Seddon, N., Chausson, A., Berry, P., Girardin, C. A. J., Smith, A., & Turner, B. (2020). Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philosophical Transactions. Biological Sciences, 375(1794), 20190120. https://doi.org/10.1098/rstb.2019.0120 Sica, F., & Nesticò, A. (2021). The Benefit Transfer Method for the Economic Evaluation of Urban Forests. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12954 LNCS, 39–49. https://doi.org/10.1007/978-3-030-86979-3_3/TABLES/4 Sijtsma, F. J., van der Bilt, W. G. M., van Hinsberg, A., de Knegt, B., van der Heide, M., Leneman, H., & Verburg, R. (2017). Planning nature in urbanized countries. An analysis of monetary and non-monetary impacts of conservation policy scenarios in the Netherlands. HELIYON, 3(3). https://doi.org/10.1016/j.heliyon.2017.e00280 Silva, C. M., Cruz, C. O., & Teotonio, I. (2019). Project GENESIS: An All-inclusive Model to Perform Cost-Benefit Analysis of Green Roofs and Walls. EUROPEAN JOURNAL OF SUSTAINABLE DEVELOPMENT, 8(3), 85–94. https://doi.org/10.14207/ejsd.2019.v8n3p85 Sinha, M. (2021). Harnessing land value capture: Perspectives from India’s urban rail corridors. Land Use Policy, 108, 105526. https://doi.org/10.1016/j.landusepol.2021.105526 Soto-Montes-de-Oca, G., Bark, R., & González-Arellano, S. (2020). Incorporating the insurance value of peri-urban ecosystem services into natural hazard policies and insurance products: Insights from Mexico. Ecological Economics, 169, 106510. https://doi.org/10.1016/J.ECOLECON.2019.106510 Sowińska-Świerkosz, B., & García, J. (2022). What are Nature-based solutions (NBS)? Setting core ideas for concept clarification. Nature-Based Solutions, 2. https://doi.org/10.1016/j.nbsj.2022.100009 Swann, S., Blandford, L., Cheng, S., Cook, J., Miller, A., & Barr, R. (2021). Public international funding of nature-based solutions for adaptation: A landscape assessment. Tam, V. W. Y., Wang, J. Y., & Le, K. N. (2016). Thermal insulation and cost effectiveness of green-roof systems: An empirical study in Hong Kong. BUILDING AND ENVIRONMENT, 110, 46–54. https://doi.org/10.1016/j.buildenv.2016.09.032 Testa, S., Nielsen, K. R., Bogers, M., & Cincotti, S. (2019). The role of crowdfunding in moving towards a sustainable society. Technological Forecasting and Social Change, 141, 66–73. https://doi.org/10.1016/J.TECHFORE.2018.12.011 Thajudeen, K. S. (2017). Sukuk for the Financing of Non-revenue Water Management: Malaysia as a Case Study. In S. A. R. Rizvi & I. Saba (Eds.), DEVELOPMENTS IN ISLAMIC FINANCE: CHALLENGES AND INITIATIVES. https://doi.org/10.1007/978-3-319-59342-5_2 Toxopeus, H., & Polzin, F. (2021). Reviewing financing barriers and strategies for urban nature-based solutions. Journal of Environmental Management, 289, 112371. https://doi.org/10.1016/j.jenvman.2021.112371 Valente, R. A., Petean, F. C. D., & Vettorazzi, C. A. (2017). MULTICRITERIA DECISION ANALYSIS FOR PRIORITIZING AREAS FOR FOREST RESTORATION. CERNE, 23(1), 53–60. https://doi.org/10.1590/01047760201723012258 van Oijstaeijen, W., van Passel, S., & Cools, J. (2020). Urban green infrastructure: A review on valuation toolkits from an urban planning perspective. Journal of Environmental Management, 267, 110603. https://doi.org/10.1016/J.JENVMAN.2020.110603 Wang, H., Zhou, J. J., Tang, Y., Liu, Z. L., Kang, A. Q., & Chen, B. (2021). Flood economic assessment of structural measure based on integrated flood risk management: A case study in Beijing. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 280. https://doi.org/10.1016/j.jenvman.2020.111701 Webber, J. L., Fu, G. T., & Butler, D. (2019). Comparing cost-effectiveness of surface water flood management interventions in a UK catchment. JOURNAL OF FLOOD RISK MANAGEMENT, 12. https://doi.org/10.1111/jfr3.12523 Young, R. F. (2011). Planting the Living City. Https://Doi.Org/10.1080/01944363.2011.616996, 77(4), 368–381. https://doi.org/10.1080/01944363.2011.616996 Zeng, J. J., Lin, G. S., & Huang, G. R. (2021). Evaluation of the cost-effectiveness of Green Infrastructure in climate change scenarios using TOPSIS. URBAN FORESTRY & URBAN GREENING, 64. https://doi.org/10.1016/j.ufug.2021.127287 Zhang, C.-Y., Oki, T., Viaggi, D., & Raggi, M. (2021). Optimal Multi-Sectoral Water Resources Allocation Based on Economic Evaluation Considering the Environmental Flow Requirements: A Case Study of Yellow River Basin. Water 2021, Vol. 13, Page 2253, 13(16), 2253. https://doi.org/10.3390/W13162253 Ziogou, I., Michopoulos, A., Voulgari, V., & Zachariadis, T. (2017). Energy, environmental and economic assessment of electricity savings from the operation of green roofs in urban office buildings of a warm Mediterranean region. JOURNAL OF CLEANER PRODUCTION, 168, 346–356. https://doi.org/10.1016/j.jclepro.2017.08.217-
local.type.refereedNon-Refereed-
local.type.specifiedConference Presentation-
local.bibliographicCitation.statusIn press-
dc.identifier.urlhttps://registration.sdewes.org/pap2022/virtcon/-
local.uhasselt.internationalno-
item.fullcitationVAN LIMPT, Luc; COMPERNOLLE, Tine & LIZIN, Sebastien (2022) The decision to invest in nature-based solutions from an environmental economic and financial perspective: a systematic review.. In: 17th conference on Sustainable Development of Energy, Water and Environment Systems, Paphos, Cyprus, 06/11/2022 - 10/11/2022.-
item.contributorVAN LIMPT, Luc-
item.contributorCOMPERNOLLE, Tine-
item.contributorLIZIN, Sebastien-
item.accessRightsRestricted Access-
item.fulltextWith Fulltext-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
0104_Luc_VanLimpt_SDEWES- 9 11 2022.pptx
  Restricted Access
Conference material22.55 MBMicrosoft Powerpoint XMLView/Open    Request a copy
Show simple item record

Page view(s)

56
checked on Aug 6, 2023

Download(s)

6
checked on Aug 6, 2023

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.