Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/39263
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHAELDERMANS, Tom-
dc.contributor.authorPUENTE TORRES, Jeamichel-
dc.contributor.authorVERCRUYSSE, Willem-
dc.contributor.authorCARLEER, Robert-
dc.contributor.authorSAMYN, Pieter-
dc.contributor.authorVANDAMME, Dries-
dc.contributor.authorYPERMAN, Jan-
dc.contributor.authorCUYPERS, Ann-
dc.contributor.authorVANREPPELEN, Kenny-
dc.contributor.authorSCHREURS, Sonja-
dc.date.accessioned2023-01-18T13:03:50Z-
dc.date.available2023-01-18T13:03:50Z-
dc.date.issued2023-
dc.date.submitted2023-01-11T10:18:35Z-
dc.identifier.citationWaste, 1 (1) , p. 176 -194-
dc.identifier.issn2813-0391-
dc.identifier.urihttp://hdl.handle.net/1942/39263-
dc.description.abstractGreen roofs contribute to more sustainable cities, but current commercial substrates suffer from important limitations. If carefully selected, biochar could serve as a viable option for a more sustainable green roof substrate. We propose a protocol to select an optimal biochar for green roof substrate amendment. Coffee husks, medium‑density fiberboard, palm date fronds, and a mixture of waste wood, tree bark, and olive stone kernels are selected as residues for biochar production to develop a selection protocol. The residues are pyrolyzed at 350, 450, 500, and 550 ◦C in a lab‑scale reactor. A pyrolysis temperature of 450 ◦C is selected for upscaling and is based on biochar yield, pH, salinity, and elemental composition. From evaluating the biochar characteristics after upscaling, it can be concluded that the biochar’s carbonization degree is mainly controlled by pyrolysis temper‑ ature, while yield, pH, and salinity are more dependent on the biomass properties. Ultimately, our procedure evaluates the presence of important contaminants, the biochar’s water holding capacity, salinity, pH, and carbonization degree. To validate the developed protocol, plant coverage exper‑ iments on green roofs are performed, which are quantified using a novel digital image processing method, demonstrating its efficient use to facilitate future biochar selection in substrates.-
dc.description.sponsorshipThis work was supported by Vlaams Agentschap Innoveren en Ondernemen (VLAIO) and European Institute of Innovation and Technology (EIT) [BM20160604]. Institutional-
dc.language.isoen-
dc.publisherMDPI-
dc.rights2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).-
dc.subject.otherbiochar production-
dc.subject.otherbiochar upscaling-
dc.subject.othergreen roofs-
dc.subject.otherselection protocol-
dc.titleAn Experimentally Validated Selection Protocol for Biochar as a Sustainable Component in Green Roofs-
dc.typeJournal Contribution-
dc.identifier.epage194-
dc.identifier.issue1-
dc.identifier.spage176-
dc.identifier.volume1-
local.bibliographicCitation.jcatA1-
local.publisher.placeBasel-
dc.relation.referencesMohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef] [PubMed] Prosdocimi, I.; Kjeldsen, R.; Miller, J.D. Detection and attribution of urbanization effect on flood extremes using nonstationary flood-frequency models. Water Resour. Res. 2015, 51, 4244–4262. [Google Scholar] [CrossRef] [PubMed] Kuoppamäki, K.; Lehvävirta, S. Mitigating nutrient leaching from green roofs with biochar. Landsc. Urban Plan. 2016, 152, 39–48. [Google Scholar] [CrossRef] Bremner, T.W.; Ries, J.P.; Wolfe, W.H. Achieving sustainability with lightweight aggregates. In Proceedings of the International Conference: Sustainable Construction Materials and Technologies, 11–13 June 2007 Coventry; Kraus, R.N., Naik, T.R., Claisse, P., Sadeghi-Pouya, Eds.; Special Papers Proceedings; Pub. UW Milwaukee CBU: Milwaukee, WI, USA, 2007; pp. 13–17. [Google Scholar] Cao, C.T.N.; Farrell, C.; Kristiansen, P.E.; Rayner, J.P. Biochar makes green roof substrates lighter and improves water supply to plants. Ecol. Eng. 2014, 71, 368–374. [Google Scholar] [CrossRef] Chen, H.; Ma, J.; Wei, J.; Gong, X.; Yu, X.; Guo, H.; Zhao, Y. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates. Sci. Total Environ. 2018, 635, 333–342. [Google Scholar] [CrossRef] Kuoppamäki, K.; Hagner, M.; Lehvävirta, S.; Setälä, H. Biochar amendment in the green roof substrate affects runoff quality and quantity. Ecol. Eng. 2016, 88, 1–9. [Google Scholar] [CrossRef] Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science and Technology and Implementation; Routledge: London, UK, 2015. [Google Scholar] Sri Shalini, S.; Palanivelu, K.; Ramachandran, A.; Raghavan, V. Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—A review. Biomass Convers. Biorefinery 2021, 11, 2247–2267. [Google Scholar] [CrossRef] Ippolito, J.A.; Laird, D.A.; Busscher, W.J. Environmental benefits of biochar. J. Environ. Qual. 2012, 41, 967–972. [Google Scholar] [CrossRef] Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 2012, 41, 973–989. [Google Scholar] [CrossRef] Schimmelpfennig, S.; Glaser, B. One step forward toward characterization: Some important material properties to distinguish biochars. J. Environ. Qual. 2012, 41, 1001–1013. [Google Scholar] [CrossRef] Wang, C.; Wang, Y.; Herath, H.M.S.K. Polycyclic Aromatic Hydrocarbons (PAHs) in biochar—Their formation, occurrence and analysis: A review. Org. Geochem. 2017, 114, 1–11. [Google Scholar] [CrossRef] El-Naggar, A.; El-Naggar, A.H.; Shaheen, S.M.; Sarkar, B.; Chang, S.X.; Tsang, D.C.W.; Rinklebe, J.; Ok, Y.S. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review. J. Environ. Manag. 2019, 241, 458–467. [Google Scholar] [CrossRef] [PubMed] Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef] [PubMed] Li, S.; Harris, S.; Anandhi, A.; Chen, G. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 2019, 215, 890–902. [Google Scholar] [CrossRef] Luckett, K. Green Roof Construction and Maintenance; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar] Guijarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.J.; Burgos-Artizzu, X.P.; Ribeiro, A. Automatic segmentation of relevant textures in agricultural images. Comput. Electron. Agric. 2011, 75, 75–83. [Google Scholar] [CrossRef] Vanreppelen, K.; Vanderheyden, S.; Kuppens, T.; Schreurs, S.; Yperman, J.; Carleer, R. Activated carbon from pyrolysis of brewer spend grain: Production and adsorption properties. Waste Manag. Res. 2014, 32, 634–645. [Google Scholar] [CrossRef] Haeldermans, T.; Lataf, M.A.; Vanroelen, G.; Samyn, P.; Vandamme, D.; Cuypers, A.; Vanreppelen, K.; Schreurs, S. Numerical prediction of the mean residence time of solid materials in a pilot-scale rotary kiln. Powder Technol. 2019, 354, 392–401. [Google Scholar] [CrossRef] Boateng, A.A. Rotary Kilns-Transport Phenomena and Transport Processes; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar] Vijayan, S.N.; Sendhilkumar, S. Industrial applications of rotary kiln in various sectors—A review. Int. J. Eng. Innov. Res. 2014, 3, 342–345. [Google Scholar] Faithfull, N.T. Methods in Agricultural Chemical Analysis; CABI Publishing: Oxfordshire, UK, 2002. [Google Scholar] Smets, K.; Adriaensens, P.; Reggers, G.; Schreurs, S.; Carleer, R.; Yperman, J. Flash pyrolysis of rapeseed cake: Influence of temperature on the yield and the characteristics of the pyrolysis liquid. J. Anal. Appl. Pyrolysis 2011, 90, 118–125. [Google Scholar] [CrossRef] Stals, M.; Thijssen, E.; Vangronsveld, J.; Carleer, R.; Schreurs, S.; Yperman, J. Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals. J. Anal. Appl. Pyrolysis 2010, 87, 1–7. [Google Scholar] [CrossRef] Hale, S.E.; Lehmann, J.; Rutherford, D.; Zimmerman, A.R.; Bachmann, R.T.; Shitumbanuma, V.; Toole, A.O.; Sundqvist, K.L.; Arp, H.P.H.; Cornelissen, G. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ. Sci. Technol. 2012, 46, 2830–2838. [Google Scholar] [CrossRef] Keiluweit, M.; Kleber, M.; Sparrow, M.A.; Simoneit, B.R.T.; Prahl, F.G. Solvent-extractable polycyclic aromatic hydrocarbons in biochar: Influence of pyrolysis temperature and feedstock. Environ. Sci. Technol. 2012, 46, 9333–9341. [Google Scholar] [CrossRef] Burgos-Artizzu, X.P.; Ribeiro, A.; Guijarro, M.; Pajares, G. Real-time image processing for crop/weed discrimination in maize fields. Comput. Electron. Agric. 2011, 75, 337–346. [Google Scholar] [CrossRef] Sun, X.; Shan, R.; Li, X.; Pan, J.; Liu, X.; Deng, R.; Song, J. Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application. GCB Bioenergy 2017, 9, 1423–1435. [Google Scholar] [CrossRef] Haeldermans, T.; Campion, L.; Kuppens, T.; Vanreppelen, K.; Cuypers, A.; Schreurs, S. A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis. Bioresour. Technol. 2020, 318, 124083. [Google Scholar] [CrossRef] [PubMed] Veiga, T.R.L.A.; Lima, J.T.; Lima de Abreu Dessimoni, A.; Pego, M.F.F.; Soares, J.R.; Trugilho, P.F. Different Plant Biomass Characterizations for Biochar Production. Cerne 2017, 23, 529–536. [Google Scholar] [CrossRef] Nasser, R.A.; Salem, M.Z.M.; Hiziroglu, S.; Al-Mefarrej, H.A.; Mohareb, A.S.; Alam, M.; Aref, I.M. Chemical analysis of different parts of date palm (Phoenix dactylifera L.) using ultimate, proximate and thermo-gravimetric techniques for energy production. Energies 2016, 9, 374. [Google Scholar] [CrossRef] Adapa, P.K.; Karunakaran, C.; Tabil, L.G.; Schoenau, G.J. Qualitative and quantitative analysis of lignocellulosic biomass using infrared spectroscopy. In Proceedings of the CSBE/SCGAB 2009 Annual Conference, Winnipeg, MB, USA, 6–10 August 2009. [Google Scholar] Galvàn-Ruiz, M.; Hernàndez, J.; Baños, L.; Noriega-Montes, J.; Rodriguez-Garcia, M.E. Characterization of calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction. J. Mater. Civ. Eng. 2009, 21, 694–698. [Google Scholar] [CrossRef] Tang, Y.; Alam, M.S.; Konhauser, K.O.; Alessi, D.S.; Xu, S.; Tian, W.J.; Liu, Y. Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. J. Clean. Prod. 2019, 209, 927–936. [Google Scholar] [CrossRef] Uzun, B.B.; Pütün, A.E.; Pütün, E. Composition of products obtained via fast pyrolysis of olive-oil residue: Effect of pyrolysis temperature. J. Anal. Appl. Pyrolysis 2007, 79, 147–153. [Google Scholar] [CrossRef] Jiang, L.; Hu, S.; Sun, L.S.; Su, S.; Xu, K.; He, L.M.; Xiang, J. Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresour. Technol. 2013, 146, 254–260. [Google Scholar] [CrossRef] Rodriguez Correa, C.; Hehr, T.; Voglhuber-Slavinsky, A.; Rauscher, Y.; Kruse, A. Pyrolysis vs. hydrothermal carbonization: Understanding the effect of biomass structural components and inorganic compounds on the char properties. J. Anal. Appl. Pyrolysis 2019, 140, 137–147. [Google Scholar] [CrossRef] Usevičiūtė, L.; Baltrėnaitė-Gedienė, E. Dependence of pyrolysis temperature and lignocellulosic physical-chemical properties of biochar on its wettability. Biomass Convers. Biorefinery 2020, 11, 2775–2793. [Google Scholar] [CrossRef] Yuan, J.-H.; Xu, R.-K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed] Naeem, M.A.; Khalid, M.; Ahmad, Z.; Naveed, M. Low pyrolysis temperature biochar improves growth and nutrient availability of maize on typic calciargid. Commun. Soil Sci. Plant Anal. 2016, 47, 41–51. [Google Scholar] [CrossRef] Haeldermans, T.; Claesen, J.; Maggen, J.; Carleer, R.; Yperman, J.; Adriaensens, P.; Samyn, P.; Vandamme, D.; Cuypers, A.; Vanreppelen, K.; et al. Microwave assisted and conventional pyrolysis of MDF—Characterization of the produced biochars. J. Anal. Appl. Pyrolysis 2019, 138, 218–230. [Google Scholar] [CrossRef] European Biochar Certificate (EBC). Guidelines for a Sustainable Production of Biochar; European Biochar Certificate (EBC): Arbaz, Switzerland, 2020. [Google Scholar] [CrossRef] Ronsse, F.; van Hecke, S.; Dickinson, D.; Prins, W. Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. GCB Bioenergy 2013, 5, 104–115. [Google Scholar] [CrossRef] Dieguez-Alonso, A.; Anca-Couce, A.; Zobel, N.; Behrendt, F. Understanding the primary and secondary slow pyrolysis mechanisms of holocellulose, lignin and wood with laser-induced fluorescence. Fuel 2015, 153, 102–109. [Google Scholar] [CrossRef] Fornes, F.; Belda, R.M.; Lidón, A. Analysis of two biochars and one hydrochar from different feedstock: Focus set on environmental, nutritional and horticultural considerations. J. Clean. Prod. 2015, 86, 40–48. [Google Scholar] [CrossRef] Fornes, F.; Belda, R.M. Biochar versus hydrochar as growth media constituents for ornamental plant cultivation. Sci. Agric. 2018, 75, 304–312. [Google Scholar] [CrossRef] Mierzwa-Hersztek, M.; Gondek, K.; Jewiarz, M.; Dziedzic, K. Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes. J. Mater. Cycles Waste Manag. 2019, 21, 786–800. [Google Scholar] [CrossRef] Zheng, Y.; Clark, M.J. Optimal growing substrate pH for five sedum species. HortScience 2013, 48, 448–452. [Google Scholar] [CrossRef] Zhang, J.; Liu, J.; Liu, R. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 2015, 176, 288–291. [Google Scholar] [CrossRef] International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil; International Biochar Initiative: Washington, DC, USA, 2015. [Google Scholar] Dutta, T.; Kwon, E.; Bhattacharya, S.S.; Jeon, B.H.; Deep, A.; Uchimiya, M.; Kim, K.H. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review. GCB Bioenergy 2017, 9, 990–1004. [Google Scholar] [CrossRef] Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energy 2013, 104, 801–809. [Google Scholar] [CrossRef] Acquah, G.E.; Via, B.K.; Fasina, O.O.; Eckhardt, L.G. Rapid Quantitative Analysis of Forest Biomass Using Fourier Transform Infrared Spectroscopy and Partial Least Squares Regression. J. Anal. Methods Chem. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [PubMed] Müller, G.; Bartholme, M.; Kharazipour, A.; Polle, A. FTIR-ATR spectroscopic analysis of changes in fiber properties during insulating fiberboard manufacture of Beech Wood. Wood Fiber Sci. 2008, 40, 532–543. [Google Scholar] Lyman, D.J.; Benck, R.; Dell, S.; Merle, S.; Murray-Wijelath, J. FTIR-ATR analysis of brewed coffee: Effect of roasting conditions. J. Agric. Food Chem. 2003, 51, 3268–3272. [Google Scholar] [CrossRef] Lao, W.; Li, G.; Zhou, Q.; Qin, T. Quantitative analysis of biomass in three types of wood-plastic composites by FTIR spectroscopy. BioResources 2014, 9, 6073–6086. [Google Scholar] [CrossRef] Liu, Y.; He, Z.; Uchimiya, M. Comparison of Biochar Formation from Various Agricultural By-Products Using FTIR Spectroscopy. Mod. Appl. Sci. 2015, 9, 246–253. [Google Scholar] [CrossRef] Zhao, L.; Cao, X.; Mašek, O.; Zimmerman, A. 2013 Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 2013, 256, 1–9. [Google Scholar] [CrossRef] [PubMed] Molenda, J.; Swat, M.; Osuch-Słomka, E. Effect of Thermal Conditions of Pyrolysis Process on the Quality of Biochar Obtained from Vegetable Waste. Eng. Prot. Environ. 2018, 21, 289–302. [Google Scholar] [CrossRef] Dai, L.; Tan, F.; Li, H.; Zhu, N.; He, M.; Zhu, Q.; Hu, G.; Wang, L.; Zhao, J. Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. J. Environ. Manag. 2017, 198, 70–74. [Google Scholar] [CrossRef] [PubMed]-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.3390/waste1010013-
local.provider.typePdf-
local.uhasselt.internationalyes-
item.fullcitationHAELDERMANS, Tom; PUENTE TORRES, Jeamichel; VERCRUYSSE, Willem; CARLEER, Robert; SAMYN, Pieter; VANDAMME, Dries; YPERMAN, Jan; CUYPERS, Ann; VANREPPELEN, Kenny & SCHREURS, Sonja (2023) An Experimentally Validated Selection Protocol for Biochar as a Sustainable Component in Green Roofs. In: Waste, 1 (1) , p. 176 -194.-
item.contributorHAELDERMANS, Tom-
item.contributorPUENTE TORRES, Jeamichel-
item.contributorVERCRUYSSE, Willem-
item.contributorCARLEER, Robert-
item.contributorSAMYN, Pieter-
item.contributorVANDAMME, Dries-
item.contributorYPERMAN, Jan-
item.contributorCUYPERS, Ann-
item.contributorVANREPPELEN, Kenny-
item.contributorSCHREURS, Sonja-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
crisitem.journal.issn2813-0391-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
waste-01-00013.pdfPublished version2.31 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.