Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/39287
Title: T1w/FLAIR ratio standardization as a myelin marker in MS patients
Authors: Cappelle, S.
Pareto, D.
Sunaert, S.
Smets , I
LAENEN, Annouschka 
Dubois, B.
Demaerel, Ph
Issue Date: 2022
Publisher: ELSEVIER SCI LTD
Source: NeuroImage-Clinical, 36 (Art N° 103248)
Abstract: Introduction: Calculation of a T1w/T2w ratio was introduced as a proxy for myelin integrity in the brain of multiple sclerosis (MS) patients. Since nowadays 3D FLAIR is commonly used for lesion detection instead of T2w images, we introduce a T1w/FLAIR ratio as an alternative for the T1w/T2w ratio. Objectives: Bias and intensity variation are widely present between different scanners, between subjects and within subjects over time in T1w, T2w and FLAIR images. We present a standardized method for calculating a histogram calibrated T1w/FLAIR ratio to reduce bias and intensity variation in MR sequences from different scanners and at different time-points. Material and methods: 207 Relapsing Remitting MS patients were scanned on 4 different 3 T scanners with a protocol including 3D T1w, 2D T2w and 3D FLAIR images. After bias correction, T1w/FLAIR ratio maps and T1w/T2w ratio maps were calculated in 4 different ways: without calibration, with linear histogram calibration as described by Ganzetti et al. (2014), and by using 2 methods of non-linear histogram calibration. The first nonlinear calibration uses a template of extra-cerebral tissue and cerebrospinal fluid (CSF) brought from Montreal Neurological Institute (MNI) space to subject space; for the second nonlinear method we used an extracerebral tissue and CSF template of our own subjects. Additionally, we segmented several brain structures such as Normal Appearing White Matter (NAWM), Normal Appearing Grey Matter (NAGM), corpus callosum, thalami and MS lesions using Freesurfer and Samseg. Results: The coefficient of variation of T1w/FLAIR ratio in NAWM for the no calibrated, linear, and 2 nonlinear calibration methods were respectively 24, 19.1, 9.5, 13.8. The nonlinear methods of calibration showed the best results for calculating the T1w/FLAIR ratio with a smaller dispersion of the data and a smaller overlap of T1w/ FLAIR ratio in the different segmented brain structures. T1w/T2w and T1w/FLAIR ratios showed a wider range of values compared to MTR values. Conclusions: Calibration of T1w/T2w and T1w/FLAIR ratio maps is imperative to account for the sources of variation described above. The nonlinear calibration methods showed the best reduction of between-subject and within-subject variability. The T1w/T2w and T1w/FLAIR ratio seem to be more sensitive to smaller changes in tissue integrity than MTR. Future work is needed to determine the exact substrate of T1w/FLAIR ratio and to obtain correlations with clinical outcome.
Notes: Cappelle, S (corresponding author), Univ Hosp Leuven, Dept Radiol, Leuven, Belgium.
Keywords: Multiple sclerosis;Integrity;T1w/T2w ratio;T1w/FLAIR ratio;Image calibration
Document URI: http://hdl.handle.net/1942/39287
ISSN: 2213-1582
e-ISSN: 2213-1582
DOI: 10.1016/j.nicl.2022.103248
ISI #: 000898431500008
Rights: 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
T1w_FLAIR ratio standardization as a myelin marker in MS patients.pdfPublished version5.04 MBAdobe PDFView/Open
Show full item record

WEB OF SCIENCETM
Citations

1
checked on Apr 30, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.