Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/396
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorVERBEKE, Geert-
dc.date.accessioned2004-10-29T08:56:13Z-
dc.date.available2004-10-29T08:56:13Z-
dc.date.issued2001-
dc.identifier.citationSTATISTICAL MODELLING, 1(4). p. 235-269-
dc.identifier.issn1471-082X-
dc.identifier.urihttp://hdl.handle.net/1942/396-
dc.description.abstractMany approaches are available for the analysis of continuous longitudinal data. Over the last couple of decades, a lot of emphasis has been put on the linear mixed model. The current paper is dedicated to an overview of this approach, with emphasis on model formulation, interpretation and inference. Advantages as well as drawbacks are discussed, and guidelines are given for general statistical practice. Special attention is given to the problem of missing data, i.e., the case where not all data are present as planned in the original design of the study.-
dc.description.sponsorshipWe gratefully acknowledge support from FWO-Vlaanderen Research Project ‘Sensitivity Analysis for Incomplete and Coarse Data’.-
dc.language.isoen-
dc.rights(C) Arnold 2001-
dc.subjectLongitudinal data-
dc.subjectMissing data-
dc.subject.otherdropout; linear mixed models; longitudinal data; missing data; pattern mixture model; random effects; selection model-
dc.titleA review on linear mixed models for longitudinal data, possibly subject to dropout-
dc.typeJournal Contribution-
dc.identifier.epage269-
dc.identifier.issue4-
dc.identifier.spage235-
dc.identifier.volume1-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1177/1471082X0100100402-
dc.identifier.urlhttps://www.researchgate.net/publication/243102774_A_review_on_linear_mixed_models_for_longitudinal_data_possibly_subject_to_dropout-
item.contributorMOLENBERGHS, Geert-
item.contributorVERBEKE, Geert-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
item.fullcitationMOLENBERGHS, Geert & VERBEKE, Geert (2001) A review on linear mixed models for longitudinal data, possibly subject to dropout. In: STATISTICAL MODELLING, 1(4). p. 235-269.-
crisitem.journal.issn1471-082X-
crisitem.journal.eissn1477-0342-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
molenberghs2016.pdf
  Restricted Access
Published version429.45 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.