Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/3978
Title: | Ideals of cubic algebras and an invariant ring of the Weyl algebra | Authors: | DE NAEGHEL, Koen Marconnet, N |
Issue Date: | 2007 | Publisher: | ACADEMIC PRESS INC ELSEVIER SCIENCE | Source: | JOURNAL OF ALGEBRA, 311(1). p. 380-433 | Abstract: | We classify reflexive graded right ideals, up to isomorphism and shift, of generic cubic three-dimensional Artin-Schelter regular algebras. We also determine the possible Hilbert functions of these ideals. These results are obtained by using similar methods as for quadratic Artin-Schelter algebras [K. DE NAEGHEL, M. VAN DEN BERGH, Ideal classes of three-dimensional Sklyanin algebras, J. Algebra 276 (2) (2004) 515-551; K. DE NAEGHEL, M. VAN DEN BERGH, Ideal classes of three dimensional Artin-Schelter regular algebras, J. Algebra 283 (1) (2005) 399-429]. In particular our results apply to the enveloping algebra of the Heisenberg-Lie algebra from which we deduce a classification of right ideals of the invariant ring A(1)(<rho >) of the first Weyl algebra A(1) = k < x, y >/(xy - yx - 1) under the automorphism rho(x) = -x, rho(y) = -y. | Notes: | Hasselt Univ, Dept WNI, B-3590 Diepenbeek, Belgium. Univ Antwerp, Dept Wiskunde Informat, B-2020 Antwerp, Belgium.DE NAEGHEL, K, Hasselt Univ, Dept WNI, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.koendenaeghel@hotmail.com nicolas.marconnet@ua.ac.be | Keywords: | Weyl algebra; enveloping algebra of the Heisenberg-Lie algebra; quantum quadric; ideals; Hilbert series | Document URI: | http://hdl.handle.net/1942/3978 | ISSN: | 0021-8693 | e-ISSN: | 1090-266X | DOI: | 10.1016/j.jalgebra.2006.11.015 | ISI #: | 000246049400021 | Category: | A1 | Type: | Journal Contribution | Validations: | ecoom 2008 |
Appears in Collections: | Research publications |
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.