Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/39847
Title: High-resolution structural-functional substrate-trigger characterization: Future roadmap for catheter ablation of ventricular tachycardia
Authors: STOKS, Job 
Hermans, Ben J. M.
Boukens, Bas J. D.
Holtackers, Robert J.
Gommers, Suzanne
Kaya, Yesim S.
Vernooy, Kevin
Cluitmans, Matthijs J. M.
Volders, Paul G. A.
ter Bekke, Rachel M. A.
Issue Date: 2023
Publisher: FRONTIERS MEDIA SA
Source: Frontiers in Cardiovascular Medicine, 10 (Art N° 1112980)
Abstract: Introduction Patients with ventricular tachyarrhythmias (VT) are at high risk of sudden cardiac death. When appropriate, catheter ablation is modestly effective, with relatively high VT recurrence and complication rates. Personalized models that incorporate imaging and computational approaches have advanced VT management. However, 3D patient-specific functional electrical information is typically not considered. We hypothesize that incorporating non-invasive 3D electrical and structural characterization in a patient-specific model improves VT-substrate recognition and ablation targeting.Materials and methods In a 53-year-old male with ischemic cardiomyopathy and recurrent monomorphic VT, we built a structural-functional model based on high-resolution 3D late-gadolinium enhancement (LGE) cardiac magnetic resonance imaging (3D-LGE CMR), multi-detector computed tomography (CT), and electrocardiographic imaging (ECGI). Invasive data from high-density contact and pace mapping obtained during endocardial VT-substrate modification were also incorporated. The integrated 3D electro-anatomic model was analyzed off-line.Results Merging the invasive voltage maps and 3D-LGE CMR endocardial geometry led to a mean Euclidean node-to-node distance of 5 & PLUSMN; 2 mm. Inferolateral and apical areas of low bipolar voltage (< 1.5 mV) were associated with high 3D-LGE CMR signal intensity (> 0.4) and with higher transmurality of fibrosis. Areas of functional conduction delay or block (evoked delayed potentials, EDPs) were in close proximity to 3D-LGE CMR-derived heterogeneous tissue corridors. ECGI pinpointed the epicardial VT exit at & SIM;10 mm from the endocardial site of origin, both juxtaposed to the distal ends of two heterogeneous tissue corridors in the inferobasal left ventricle. Radiofrequency ablation at the entrances of these corridors, eliminating all EDPs, and at the VT site of origin rendered the patient non-inducible and arrhythmia-free until the present day (20 months follow-up). Off-line analysis in our model uncovered dynamic electrical instability of the LV inferolateral heterogeneous scar region which set the stage for an evolving VT circuit.Discussion and conclusion We developed a personalized 3D model that integrates high-resolution structural and electrical information and allows the investigation of their dynamic interaction during arrhythmia formation. This model enhances our mechanistic understanding of scar-related VT and provides an advanced, non-invasive roadmap for catheter ablation.
Notes: ter Bekke, RMA (corresponding author), Maastricht Univ, Cardiovasc Res Inst Maastricht CARIM, Med Ctr, Dept Cardiol, Maastricht, Netherlands.
rachel.ter.bekke@mumc.nl
Keywords: VT;image integration;multi-modality;electroanatomical mapping;ECGI;CMR;personalized medicine;CT
Document URI: http://hdl.handle.net/1942/39847
ISSN: 2297-055X
e-ISSN: 2297-055X
DOI: 10.3389/fcvm.2023.1112980
ISI #: 000942484600001
Rights: 2023 Stoks, Hermans, Boukens, Holtackers, Gommers, Kaya, Vernooy, Cluitmans, Volders and ter Bekke. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Show full item record

WEB OF SCIENCETM
Citations

2
checked on Apr 30, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.