Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/3995
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BRIJS, Tom | - |
dc.contributor.author | KARLIS, Dimitris | - |
dc.contributor.author | VAN DEN BOSSCHE, Filip | - |
dc.contributor.author | WETS, Geert | - |
dc.date.accessioned | 2007-12-07T13:52:30Z | - |
dc.date.available | 2007-12-07T13:52:30Z | - |
dc.date.issued | 2007 | - |
dc.identifier.citation | JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 170. p. 1001-1017 | - |
dc.identifier.issn | 0964-1998 | - |
dc.identifier.uri | http://hdl.handle.net/1942/3995 | - |
dc.description.abstract | Road safety has recently become a major concern in most modern societies. The identification of sites that are more dangerous than others (black spots) can help in better scheduling road safety policies. This paper proposes a methodology for ranking sites according to their level of hazard. The model is innovative in at least two respects. Firstly, it makes use of all relevant information per accident location, including the total number of accidents and the number of fatalities, as well as the number of slight and serious injuries. Secondly, the model includes the use of a cost function to rank the sites with respect to their total expected cost to society. Bayesian estimation for the model via a Markov chain Monte Carlo approach is proposed. Accident data from 519 intersections in Leuven (Belgium) are used to illustrate the methodology proposed. Furthermore, different cost functions are used to show the effect of the proposed method on the use of different costs per type of injury. | - |
dc.format.extent | 270434 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | - |
dc.publisher | BLACKWELL PUBLISHING | - |
dc.subject.other | Gibbs sampling; hierarchical Bayes models; Markov chain Monte Carlo methods; multivariate Poisson distribution; road accidents | - |
dc.title | A Bayesian model for ranking hazardous road sites | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 1017 | - |
dc.identifier.spage | 1001 | - |
dc.identifier.volume | 170 | - |
local.format.pages | 17 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Hasselt Univ, Transportat Res Inst, B-3590 Diepenbeek, Belgium. Athens Univ Econ & Business, Athens, Greece.BRIJS, T, Hasselt Univ, Transportat Res Inst, Wetenschapspk,Gebouw 5, B-3590 Diepenbeek, Belgium.tom.brijs@uhasselt.be | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1111/j.1467-985X.2007.00486.x | - |
dc.identifier.isi | 000249827500009 | - |
item.fulltext | With Fulltext | - |
item.contributor | BRIJS, Tom | - |
item.contributor | KARLIS, Dimitris | - |
item.contributor | VAN DEN BOSSCHE, Filip | - |
item.contributor | WETS, Geert | - |
item.fullcitation | BRIJS, Tom; KARLIS, Dimitris; VAN DEN BOSSCHE, Filip & WETS, Geert (2007) A Bayesian model for ranking hazardous road sites. In: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 170. p. 1001-1017. | - |
item.accessRights | Closed Access | - |
item.validation | ecoom 2008 | - |
crisitem.journal.issn | 0964-1998 | - |
crisitem.journal.eissn | 1467-985X | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
A882-R3-final.pdf | 264.1 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.