Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/4001
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorVERBEKE, Geert-
dc.date.accessioned2007-12-07T13:55:45Z-
dc.date.available2007-12-07T13:55:45Z-
dc.date.issued2007-
dc.identifier.citationAMERICAN STATISTICIAN, 61(1). p. 22-27-
dc.identifier.issn0003-1305-
dc.identifier.urihttp://hdl.handle.net/1942/4001-
dc.description.abstractLikelihood ratio, score, and Wald tests statistics are asymptotically equivalent. This statement is widely known to hold true under standard conditions. But what if the parameter space is constrained and the null hypothesis lies on the boundary of the parameter space, such as, for example, in variance component testing? Quite a bit is known in such situations too, but knowledge is scattered across the literature and considerably less well known among practitioners. Motivated from simple but generic examples, we show there is quite a market for asymptotic one-sided hypothesis tests, in the scalar as well as in the vector case. Reassuringly, the three standard tests can be used here as well and are asymptotically equivalent, but a somewhat more elaborate version of the score and Wald test statistics is needed. Null distributions take the form of mixtures of chi(2) distributions. Statistical and numerical considerations lead us to formulate pragmatic guidelines as to when to prefer which of the three tests.-
dc.language.isoen-
dc.publisherAMER STATISTICAL ASSOC-
dc.rights(C) American Statisticial Association-
dc.subject.otherboundary condition; dose response; generalized linear mixed model; likelihood ratio test; linear mixed model; one-sided test; score test; variance component; Wald test-
dc.subject.otherboundary condition; dose response; generalized linear mixed model; likelihood ratio test; linear mixed model; one-sided test; score test; variance component; Wald test-
dc.titleLikelihood ratio, score, and Wald tests in a constrained parameter space-
dc.typeJournal Contribution-
dc.identifier.epage27-
dc.identifier.issue1-
dc.identifier.spage22-
dc.identifier.volume61-
local.format.pages6-
local.bibliographicCitation.jcatA1-
dc.description.notesHasselt Univ, Ctr Stat, Diepenbeek, Belgium. Katholieke Univ Leuven, Ctr Biostat, B-3000 Louvain, Belgium.MOLENBERGHS, G, Hasselt Univ, Ctr Stat, Diepenbeek, Belgium.geert.molenberghs@uhasselt.be geert.verbeke@med.kuleuven.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1198/000313007X171322-
dc.identifier.isi000243781600003-
dc.identifier.urlhttps://www.researchgate.net/publication/4741391_Likelihood_Ratio_Score_and_Wald_Tests_in_a_Constrained_Parameter_Space-
item.validationecoom 2008-
item.contributorMOLENBERGHS, Geert-
item.contributorVERBEKE, Geert-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
item.fullcitationMOLENBERGHS, Geert & VERBEKE, Geert (2007) Likelihood ratio, score, and Wald tests in a constrained parameter space. In: AMERICAN STATISTICIAN, 61(1). p. 22-27.-
crisitem.journal.issn0003-1305-
crisitem.journal.eissn1537-2731-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
a.pdf
  Restricted Access
Published version307.02 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.