Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/4004
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | JANSSENS, Davy | - |
dc.contributor.author | Lan, Yu | - |
dc.contributor.author | WETS, Geert | - |
dc.contributor.author | Chen, Guoqing | - |
dc.date.accessioned | 2007-12-07T13:57:57Z | - |
dc.date.available | 2007-12-07T13:57:57Z | - |
dc.date.issued | 2007 | - |
dc.identifier.citation | KNOWLEDGE-BASED SYSTEMS, 20(5). p. 466-477 | - |
dc.identifier.issn | 0950-7051 | - |
dc.identifier.uri | http://hdl.handle.net/1942/4004 | - |
dc.description.abstract | The Reinforcement Machine Learning technique presented in this paper simulates time and location information for a given sequence of activities and transport modes. The main contributions to the current state-of-the art are the allocation of location information in the simulation of activity-travel patterns, the non-restriction to a given number of activities and the incorporation of realistic travel times. Furthermore, the time and location allocation problem were treated and integrated simultaneously, which means that the respondents' reward is not only maximized in terms of minimum travel duration, but also simultaneously in terms of optimal time allocation. (C) 2007 Elsevier B.V. All rights reserved. | - |
dc.language.iso | en | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.subject.other | reinforcement learning; Q-learning; agent-based micro-simulation systems; activity-based modelling | - |
dc.title | Allocating time and location information to activity-travel patterns through reinforcement learning | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 477 | - |
dc.identifier.issue | 5 | - |
dc.identifier.spage | 466 | - |
dc.identifier.volume | 20 | - |
local.format.pages | 12 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Hasselt Univ, Transportat Res Inst, B-3590 Diepenbeek, Belgium. Tsing Hua Univ, Sch Econ & Management, Beijing 100084, Peoples R China.WETS, G, Hasselt Univ, Transportat Res Inst, Wetenschapspk 5 Bus 6, B-3590 Diepenbeek, Belgium.geert.wets@uhasselt.be | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1016/j.knosys.2007.01.008 | - |
dc.identifier.isi | 000247762200004 | - |
item.validation | ecoom 2008 | - |
item.contributor | JANSSENS, Davy | - |
item.contributor | Lan, Yu | - |
item.contributor | WETS, Geert | - |
item.contributor | Chen, Guoqing | - |
item.fullcitation | JANSSENS, Davy; Lan, Yu; WETS, Geert & Chen, Guoqing (2007) Allocating time and location information to activity-travel patterns through reinforcement learning. In: KNOWLEDGE-BASED SYSTEMS, 20(5). p. 466-477. | - |
item.fulltext | No Fulltext | - |
item.accessRights | Closed Access | - |
crisitem.journal.issn | 0950-7051 | - |
crisitem.journal.eissn | 1872-7409 | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.