Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/4004
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJANSSENS, Davy-
dc.contributor.authorLan, Yu-
dc.contributor.authorWETS, Geert-
dc.contributor.authorChen, Guoqing-
dc.date.accessioned2007-12-07T13:57:57Z-
dc.date.available2007-12-07T13:57:57Z-
dc.date.issued2007-
dc.identifier.citationKNOWLEDGE-BASED SYSTEMS, 20(5). p. 466-477-
dc.identifier.issn0950-7051-
dc.identifier.urihttp://hdl.handle.net/1942/4004-
dc.description.abstractThe Reinforcement Machine Learning technique presented in this paper simulates time and location information for a given sequence of activities and transport modes. The main contributions to the current state-of-the art are the allocation of location information in the simulation of activity-travel patterns, the non-restriction to a given number of activities and the incorporation of realistic travel times. Furthermore, the time and location allocation problem were treated and integrated simultaneously, which means that the respondents' reward is not only maximized in terms of minimum travel duration, but also simultaneously in terms of optimal time allocation. (C) 2007 Elsevier B.V. All rights reserved.-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subject.otherreinforcement learning; Q-learning; agent-based micro-simulation systems; activity-based modelling-
dc.titleAllocating time and location information to activity-travel patterns through reinforcement learning-
dc.typeJournal Contribution-
dc.identifier.epage477-
dc.identifier.issue5-
dc.identifier.spage466-
dc.identifier.volume20-
local.format.pages12-
local.bibliographicCitation.jcatA1-
dc.description.notesHasselt Univ, Transportat Res Inst, B-3590 Diepenbeek, Belgium. Tsing Hua Univ, Sch Econ & Management, Beijing 100084, Peoples R China.WETS, G, Hasselt Univ, Transportat Res Inst, Wetenschapspk 5 Bus 6, B-3590 Diepenbeek, Belgium.geert.wets@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.knosys.2007.01.008-
dc.identifier.isi000247762200004-
item.validationecoom 2008-
item.contributorJANSSENS, Davy-
item.contributorLan, Yu-
item.contributorWETS, Geert-
item.contributorChen, Guoqing-
item.fullcitationJANSSENS, Davy; Lan, Yu; WETS, Geert & Chen, Guoqing (2007) Allocating time and location information to activity-travel patterns through reinforcement learning. In: KNOWLEDGE-BASED SYSTEMS, 20(5). p. 466-477.-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
crisitem.journal.issn0950-7051-
crisitem.journal.eissn1872-7409-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.