Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/40111
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFang, Guibiao-
dc.contributor.authorCHEN, Junhong-
dc.contributor.authorLiang, Dayong-
dc.contributor.authorAsim, Muhammad-
dc.contributor.authorVAN REETH, Frank-
dc.contributor.authorCLAESEN, Luc-
dc.contributor.authorYang, Zhenguo-
dc.contributor.authorLiu, Wenyin-
dc.date.accessioned2023-05-15T12:05:29Z-
dc.date.available2023-05-15T12:05:29Z-
dc.date.issued2023-
dc.date.submitted2023-05-07T14:32:24Z-
dc.identifier.citationNeural Processing Letters, 55 (6), p. 7543-7559-
dc.identifier.issn1370-4621-
dc.identifier.urihttp://hdl.handle.net/1942/40111-
dc.description.abstractCost volume is widely used to establish correspondences in optical flow estimation. However, when dealing with low-texture and occluded areas, it is difficult to estimate the cost volume correctly. Therefore, we propose a replacement: feature correlation transformer (FCTR), a transformer with self-and cross-attention alternations for obtaining global receptive fields and positional embedding for establishing correspondences. With global context and posi-tional information, FCTR can produce more accurate correspondences for ambiguous areas. Using position-embedded feature allows the removal of the context network; the positional information can be aggregated within ambiguous motion boundaries, and the number of model parameters can be reduced. To speed up network convergence and strengthen robust-ness, we introduce a smooth L1 loss with exponential weights in the pre-training step. At the time of submission, our method achieves competitive performance with all published optical flow methods on both the KITTI-2015 and MPI-Sintel benchmarks. Moreover, it outperforms all optical flow and scene flow methods in KITTI-2015 foreground-region prediction.-
dc.description.sponsorshipThis work is supported by the National Natural Science Foundation of China (No. 91748107, No. 62076073, No. 61902077), the Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515010616), Science and Technology Program of Guangzhou (No. 202102020524), the Guangdong Innovative Research Team Program (No. 2014ZT05G157), Special Funds for the Cultivation of Guangdong College Students’ Scientific and Technological Innovation (pdjh2020a0173), the Key-Area Research and Development Program of Guangdong Province (2019B010136001), and the Science and Technology Planning Project of Guangdong Province LZC0023. Chen Junhong was sponsored by the China Scholarship Council (No.202208440309).-
dc.language.isoen-
dc.publisherSpringer Science and Business Media {LLC}-
dc.rightsThe Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023-
dc.subject.otherOptical flow-
dc.subject.otherCost volume-
dc.subject.otherAmbiguous correspondence-
dc.subject.otherTransformer-
dc.subject.otherAlternating attention-
dc.titleFeature Correlation Transformer for Estimating Ambiguous Optical Flow-
dc.typeJournal Contribution-
dc.identifier.epage7559-
dc.identifier.issue6-
dc.identifier.spage7543-
dc.identifier.volume55-
local.format.pages17-
local.bibliographicCitation.jcatA1-
local.publisher.placeVAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1007/s11063-023-11273-6-
dc.identifier.isi000982933300003-
dc.contributor.orcidnull-
dc.contributor.orcidnull-
dc.contributor.orcidnull-
dc.contributor.orcidnull-
dc.contributor.orcidnull-
dc.contributor.orcidnull-
dc.contributor.orcidnull-
dc.contributor.orcidnull-
dc.identifier.eissn1573-773X-
local.provider.typeOrcid-
local.uhasselt.internationalyes-
item.validationecoom 2024-
item.contributorFang, Guibiao-
item.contributorCHEN, Junhong-
item.contributorLiang, Dayong-
item.contributorAsim, Muhammad-
item.contributorVAN REETH, Frank-
item.contributorCLAESEN, Luc-
item.contributorYang, Zhenguo-
item.contributorLiu, Wenyin-
item.fullcitationFang, Guibiao; CHEN, Junhong; Liang, Dayong; Asim, Muhammad; VAN REETH, Frank; CLAESEN, Luc; Yang, Zhenguo & Liu, Wenyin (2023) Feature Correlation Transformer for Estimating Ambiguous Optical Flow. In: Neural Processing Letters, 55 (6), p. 7543-7559.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn1370-4621-
crisitem.journal.eissn1573-773X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
FCTR(ral)-Final-提交版.pdfPeer-reviewed author version3.79 MBAdobe PDFView/Open
s11063-023-11273-6.pdf
  Restricted Access
Published version2.55 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.