Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/401
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCurran, Desmond-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorAaronson, N.-
dc.contributor.authorFossa, S.-
dc.contributor.authorSYLVESTER, Richard-
dc.date.accessioned2004-10-29T08:57:42Z-
dc.date.available2004-10-29T08:57:42Z-
dc.date.issued2002-
dc.identifier.citationStatistical Methods in Medical Research, 11(1). p. 5-23-
dc.identifier.issn0962-2802-
dc.identifier.urihttp://hdl.handle.net/1942/401-
dc.description.abstractQuality of Life (QL) is becoming an increasingly popular endpoint in phase III cancer clinical trials. However, there is still no agreement as to what is the optimal approach to analysis. In this paper we review some concepts which should be considered during a QL analysis. We present two modelling approaches that have been substantively developed in other research fields: selection models and pattern-mixture models. These models are compared using data from an EORTC clinical trial in poor-prognosis prostate cancer patients. It is illustrated that, although selection models and pattern mixture are probabilistically equivalent, they may shed completely different light on data from a modeller's point of view.-
dc.description.sponsorshipWe gratefully acknowledge the EORTC Genito-Urinary Tract Group for providing us with the data and FWO-Vlaanderen Research Project ‘Sensitivity Analysis for Incomplete and Coarse Data’.-
dc.language.isoen-
dc.publisherARNOLD-
dc.rights(C) Arnold 2002-
dc.subjectMissing data-
dc.subjectClinical trials-
dc.subjectLongitudinal data-
dc.titleAnalysing longitudinal continuous quality of life data with dropout-
dc.typeJournal Contribution-
dc.identifier.epage23-
dc.identifier.issue1-
dc.identifier.spage5-
dc.identifier.volume11-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1191/0962280202sm270ra-
dc.identifier.isi000174362000002-
item.fulltextWith Fulltext-
item.contributorCurran, Desmond-
item.contributorMOLENBERGHS, Geert-
item.contributorAaronson, N.-
item.contributorFossa, S.-
item.contributorSYLVESTER, Richard-
item.fullcitationCurran, Desmond; MOLENBERGHS, Geert; Aaronson, N.; Fossa, S. & SYLVESTER, Richard (2002) Analysing longitudinal continuous quality of life data with dropout. In: Statistical Methods in Medical Research, 11(1). p. 5-23.-
item.accessRightsRestricted Access-
item.validationecoom 2003-
crisitem.journal.issn0962-2802-
crisitem.journal.eissn1477-0334-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
curran2002.pdf
  Restricted Access
Published version332.74 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.