Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/40214
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVERCRUYSSE, Willem-
dc.contributor.authorGomes, Caio Laurino-
dc.contributor.authorBLEUS, Dries-
dc.contributor.authorPAPPA, Michaela-
dc.contributor.authorJOOS, Bjorn-
dc.contributor.authorHARDY, An-
dc.contributor.authorMARCHAL, Wouter-
dc.contributor.authorVANDAMME, Dries-
dc.date.accessioned2023-05-30T14:57:15Z-
dc.date.available2023-05-30T14:57:15Z-
dc.date.issued2023-
dc.date.submitted2023-05-22T07:21:48Z-
dc.identifier.citationSEPARATION AND PURIFICATION TECHNOLOGY, 319 (Art N° 124023)-
dc.identifier.issn1383-5866-
dc.identifier.urihttp://hdl.handle.net/1942/40214-
dc.description.abstractBiomass waste often contains high amounts of inorganic impurities, which is a limitation for developing high-quality bioproducts, e.g., high-purity activated carbons (ACs). Otherwise, these would be applicable to purify polluted water and air streams. Conventionally, AC’s are purified with non-sustainable and corrosive inorganic acids. This study illustrates the successful removal of the impurities from common ivy, Hedera helix L., through treatment with a natural deep eutectic solvent (NADES), namely choline chloride-malic acid (CCl:MA, 1:1 M). The demineralization efficiency is benchmarked against H2O and dilute hydrochloric acid (HCl). Moreover, the importance of the process sequence, pre- or post- pyrolysis demineralization, for AC-production was investigated. The three solvents showed different biomass (pre-pyrolysis) demineralization efficiencies, they were ranked, from best to worst, as follows: HCl > CCl:MA > H2O. However, demineralizing the biomass after pyrolysis yielded highly porous ACs, with a good mix of meso-and micropores. In this case, no differences in removal performance could be observed between HCl and CCl:MA. Lastly, the ACs phosphate adsorption capacity was highest after demineralizing biomass with either H2O or CCl:MA. Ultimately, this investigation demonstrated CCl:MA’s potential as a green demineralization agent to treat metal-contaminated biomass in future bio-refinery processes.-
dc.description.sponsorshipThis work was financially supported by Research Foundation Flanders (FWO – SB-1S92022N).-
dc.language.isoen-
dc.publisher-
dc.rightsElsevier-
dc.subject.otherCommon Ivy-
dc.subject.otherDemineralization-
dc.subject.otherBiochar-
dc.subject.otherNatural deep-eutectic solvents-
dc.subject.otherActivated carbon-
dc.titleDemineralization of common ivy-derived biomass and biochar and its effect on the resulting activated carbon properties-
dc.typeJournal Contribution-
dc.identifier.volume319-
local.bibliographicCitation.jcatA1-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
dc.relation.references[1] I. Sognnaes, A. Gambhir, D.J. van de Ven, A. Nikas, A. Anger-Kraavi, H. Bui, L. Campagnolo, E. Delpiazzo, H. Doukas, S. Giarola, N. Grant, A. Hawkes, A. C. K ̈oberle, A. Kolpakov, S. Mittal, J. Moreno, S. Perdana, J. Rogelj, M. Vielle, G. P. Peters, A multi-model analysis of long-term emissions and warming implications of current mitigation efforts, Nat. Clim. Chang. 11 (2021) 1055–1062, https://doi. org/10.1038/s41558-021-01206-3. [2] M.H. Kim, I.T. Jeong, S.B. Park, J.W. Kim, Analysis of environmental impact of activated carbon production from wood waste, Environ. Eng. Res. 24 (2019) 117–126, https://doi.org/10.4491/eer.2018.104. [3] P. Monkhouse, On-line diagnostic methods for metal species in industrial process gas 28(4) (2002) 331–381. [4] J. Donald, Y. Ohtsuka, C. (Charles) Xu, Effects of activation agents and intrinsic minerals on pore development in activated carbons derived from a Canadian peat, Mater. Lett. 65 (2011) 744–747. 10.1016/j.matlet.2010.11.049. [5] L. Ruzik, A. Dyoniziak, Natural deep eutectic solvents as a key metal extractant for fractionation in speciation analysis, Molecules. 27 (2022) 1063, https://doi.org/ 10.3390/molecules27031063. [6] M.A.R. Martins, S.P. Pinho, J.A.P. Coutinho, Insights into the nature of eutectic and deep eutectic mixtures, J. Solution Chem. 48 (2019) 962–982, https://doi.org/ 10.1007/S10953-018-0793-1/FIGURES/6. [7] Y. Liu, J.B. Friesen, J.B. McAlpine, D.C. Lankin, S.N. Chen, G.F. Pauli, Natural deep eutectic solvents: properties, applications, and perspectives, J. Nat. Prod. 81 (2018) 679–690, https://doi.org/10.1021/ACS.JNATPROD.7B00945/ASSET/IMAGES/ LARGE/NP-2017-00945G_0006.JPEG. [8] W. Tang, Y. An, K.H. Row, Emerging applications of (micro) extraction phase from hydrophilic to hydrophobic deep eutectic solvents: opportunities and trends, TrAC Trends Anal. Chem. 136 (2021), 116187, https://doi.org/10.1016/j. trac.2021.116187. [9] F. Wu, X. Liu, G. Qu, P. Ning, A critical review on extraction of valuable metals from solid waste, Sep. Purif. Technol. 301 (2022), 122043, https://doi.org/ 10.1016/j.seppur.2022.122043. [10] A.P. Abbott, G. Capper, D.L. Davies, K.J. McKenzie, S.U. Obi, Solubility of metal oxides in deep eutectic solvents based on choline chloride, J. Chem. Eng. Data. 51 (2006) 1280–1282, https://doi.org/10.1021/je060038c. [11] A. Shishov, A. Gerasimov, A. Bulatov, Deep eutectic solvents based on carboxylic acids for metals separation from plant samples: elemental analysis by ICP-OES, Food Chem. 366 (2022), 130634, https://doi.org/10.1016/j. foodchem.2021.130634. [12] W.C. Huang, D. Zhao, N. Guo, C. Xue, X. Mao, Green and facile production of chitin from crustacean shells using a natural deep eutectic solvent, J. Agric. Food Chem. 66 (2018) 11897–11901, https://doi.org/10.1021/acs.jafc.8b03847. [13] P. Zhou, J. Li, T. Yan, X. Wang, J. Huang, Z. Kuang, M. Ye, M. Pan, Selectivity of deproteinization and demineralization using natural deep eutectic solvents for production of insect chitin (Hermetia illucens), Carbohydr. Polym. 225 (2019), 115255, https://doi.org/10.1016/j.carbpol.2019.115255. [15] R.W.F. Cameron, J.E. Taylor, M.R. Emmett, What’s ‘cool’ in the world of green façades? How plant choice influences the cooling properties of green walls, Build. Environ. 73 (2014) 198–207, https://doi.org/10.1016/j.buildenv.2013.12.005. [16] I. Bezruk, M. Marksa, V. Georgiyants, L. Ivanauskas, L. Raudone, Phytogeographical profiling of ivy leaf (Hedera helix L.), Ind. Crops Prod. 154 (2020), 112713, https://doi.org/10.1016/j.indcrop.2020.112713. [17] W. Vercruysse, J. Smeets, T. Haeldermans, B. Joos, A. Hardy, P. Samyn, J. Yperman, K. Vanreppelen, R. Carleer, P. Adriaensens, W. Marchal, D. Vandamme, Biochar from raw and spent common ivy: Impact of preprocessing and pyrolysis temperature on biochar properties, J. Anal. Appl. Pyrolysis. 159 (2021), 105294, https://doi.org/10.1016/j.jaap.2021.105294. [18] M. Martins, L. Hadba, P. Mendonça, L.T. Silva, Evaluating the potential of vegetation to capture pollutants in urban environment, Environ. Sci. Eng. 2 (2022) 3–13, https://doi.org/10.1007/978-981-19-1704-2_1/FIGURES/5. [19] A. Bazan-Wozniak, P. Nowicki, R. Pietrzak, The effect of demineralization on the physicochemical and sorption properties of activated bio-carbons, Adsorption 25 (2019) 337–343, https://doi.org/10.1007/S10450-019-00009-5/FIGURES/5. [20] K. Kikuchi, K. Hasumi, T. Fujimura, Pore structures and electric double layer properties of activated carbon derived from demineralized spent coffee grounds, Electrochemistry. 89 (2021) 573–578, https://doi.org/10.5796/ electrochemistry.21-00085. [21] C. Deiana, D. Granados, R. Venturini, A. Amaya, M. Sergio, N. Tancredi, Activated carbons obtained from rice husk: influence of leaching on textural parameters, Ind. Eng. Chem. Res. 47 (2008) 4754–4757, https://doi.org/10.1021/ie071657x. [22] I.W. Almanassra, G. Mckay, V. Kochkodan, M. Ali Atieh, T. Al-Ansari, A state of the art review on phosphate removal from water by biochars, Chem. Eng. J. 409 (2021), 128211, https://doi.org/10.1016/j.cej.2020.128211. [23] K. Vanreppelen, S. Vanderheyden, T. Kuppens, S. Schreurs, J. Yperman, R. Carleer, Activated carbon from pyrolysis of brewer’s spent grain: production and adsorption properties, Waste Manag. Res. 32 (2014) 634–645, https://doi.org/ 10.1177/0734242X14538306. [24] M.B. Kasimala, B. Tedros, M. Weldeyesus, H. Imru, N.K. Tsighe, Determination of oxalates and investigation of effect of boiling on oxalate content in selected vegetable commonly grow in Eritrea, Jounral Atoms Mol. 8 (2018) 1175–1180. https://www.researchgate.net/publication/337465930. [25] D. Krishnaveni, P. Kannan, A.N. Senthilkumar, K. Raja, Safe disposal of phosphate for eutrophication control by Redgram stalk biochar with subsequent power generation, Environ. Technol. Innov. 27 (2022), 102389, https://doi.org/10.1016/ j.eti.2022.102389. [26] H. Kinzel, Calcium in the vacuoles and cell walls of plant tissue, Flora. 182 (1989) 99–125, https://doi.org/10.1016/S0367-2530(17)30398-5. [27] L. Benvenutti, A.D.P. Sanchez-Camargo, A.A.F. Zielinski, S.R.S. Ferreira, NADES as potential solvents for anthocyanin and pectin extraction from Myrciaria cauliflora fruit by-product: In silico and experimental approaches for solvent selection, J. Mol. Liq. 315 (2020) 113761. [28] S.Y. Chan, W.S. Choo, Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks, Food Chem. 141 (2013) 3752–3758, https://doi.org/10.1016/j.foodchem.2013.06.097. [29] S.T. Konyar, N. ̈Oztürk, F. Dane, Occurrence, types and distribution of calcium oxalate crystals in leaves and stems of some species of poisonous plants, Bot. Stud. 55 (2014) 1–9, https://doi.org/10.1186/1999-3110-55-32/FIGURES/6. [30] Z. Li, G.P. Demopoulos, Solubility of CaSO4 phases in aqueous HCl + CaCl2 solutions from 283 K to 353 K, J. Chem. Eng. Data. 50 (2005) 1971–1982, https:// doi.org/10.1021/je050217e. [31] D.P. Schachtman, R.J. Reid, S.M. Ayling, Phosphorus uptake by plants: from soil to cell, Plant Physiol. 116 (1998) 447–453, https://doi.org/10.1104/pp.116.2.447. [32] N. Wang, A. Tahmasebi, J. Yu, J. Xu, F. Huang, A. Mamaeva, A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass, Bioresour. Technol. 190 (2015) 89–96, https://doi.org/10.1016/j.biortech.2015.04.038. [33] G. Marcotullio, E. Krisanti, J. Giuntoli, W. de Jong, Selective production of hemicellulose-derived carbohydrates from wheat straw using dilute HCl or FeCl3 solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solid residues, Bioresour. Technol. 102 (2011) 5917–5923, https://doi.org/10.1016/j. biortech.2011.02.092. [34] O. Sanahuja-Parejo, A. Veses, J.M. L ́opez, R. Murillo, M.S. Call ́en, T. García, Ca- based catalysts for the production of high-quality bio-oils from the catalytic co- pyrolysis of grape seeds and waste tyres, Catalysts 9 (2019) 992, https://doi.org/ 10.3390/catal9120992. [35] X. Lin, S. Yang, X. Chen, P. Zheng, Y. Wang, S. Zhang, Effects of calcium on the evolution of nitrogen during pyrolysis of a typical low rank coal, Int. J. Coal Sci. Technol. 7 (2020) 397–404, https://doi.org/10.1007/s40789-019-00290-3. [36] B. Singh, M. Camps-Arbestain, J. Lehmann, CSIRO (Australia), A Guide to Analytical Methods, Biochar, 2017 https://books.google.co.uk/books? hl=en&lr=&id=ieRrDgAAQBAJ&oi=fnd&pg=PP1&dq=biochar:+a+guide+to+ analytical+ methods&ots=zBBO1rVDD7&sig=ysnb7inmaSDYu1EHCJSbOkejehg&redir_ esc=y#v=onepage&q&f=false. [37] D. Hourlier, Thermal decomposition of calcium oxalate: beyond appearances, J. Therm. Anal. Calorim. 136 (2019) 2221–2229, https://doi.org/10.1007/ s10973-018-7888-1. [38] M.A. Nahil, P.T. Williams, Surface chemistry and porosity of nitrogen-containing activated carbons produced from acrylic textile waste, Chem. Eng. J. 184 (2012) 228–237, https://doi.org/10.1016/j.cej.2012.01.047. [39] I. Iraola-Arregui, P. Van Der Gryp, J.F. G ̈orgens, A review on the demineralisation of pre- and post-pyrolysis biomass and tyre wastes, Waste Manag. 79 (2018) 667–688, https://doi.org/10.1016/j.wasman.2018.08.034. [40] Y.K. Recepoglu, A.Y. Goren, Y. Orooji, A. Khataee, Carbonaceous materials for removal and recovery of phosphate species: limitations, successes and future improvement, Chemosphere. 287 (2022), 132177, https://doi.org/10.1016/j. chemosphere.2021.132177. [41] J. Zhang, Y. Zhang, W. Zhao, Z. Li, L. Zang, Facile fabrication of calcium-doped carbon for efficient phosphorus, Adsorption 6 (1) (2021) 327–339. [42] A. Sonoda, Y. Makita, Y. Sugiura, A. Ogata, C. Suh, J.-H. Lee, K. Ooi, Influence of coexisting calcium ions during on-column phosphate adsorption and desorption with granular ferric oxide, Sep. Purif. Technol. 249 (2020) 117143. [43] M. del Mar Contreras-G ́amez, ́A. Gal ́an-Martín, N. Seixas, A.M. da Costa Lopes, A. Silvestre, E. Castro, Deep eutectic solvents for improved biomass pretreatment: current status and future prospective towards sustainable processes, Bioresour. Technol. 369 (2023), 128396, https://doi.org/10.1016/j.biortech.2022.128396. [44] A. Ullah, Y. Zhang, C. Liu, Q. Qiao, Q. Shao, J. Shi, Process intensification strategies for green solvent mediated biomass pretreatment, Bioresour. Technol. 369 (2023), 128394, https://doi.org/10.1016/j.biortech.2022.128394. [45] M. Feng, X. Lu, J. Zhang, Y. Li, C. Shi, L. Lu, S. Zhang, Direct conversion of shrimp shells to O -acylated chitin with antibacterial and anti-tumor effects by natural deep eutectic solvents, Green Chem. 21 (2019) 87–98, https://doi.org/10.1039/ C8GC02506A. W. Vercruysse et al.-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr124023-
dc.identifier.doi10.1016/j.seppur.2023.124023-
dc.identifier.isi001012881500001-
dc.identifier.eissn1873-3794-
local.provider.typePdf-
local.uhasselt.internationalyes-
item.validationecoom 2024-
item.contributorVERCRUYSSE, Willem-
item.contributorGomes, Caio Laurino-
item.contributorBLEUS, Dries-
item.contributorPAPPA, Michaela-
item.contributorJOOS, Bjorn-
item.contributorHARDY, An-
item.contributorMARCHAL, Wouter-
item.contributorVANDAMME, Dries-
item.fullcitationVERCRUYSSE, Willem; Gomes, Caio Laurino; BLEUS, Dries; PAPPA, Michaela; JOOS, Bjorn; HARDY, An; MARCHAL, Wouter & VANDAMME, Dries (2023) Demineralization of common ivy-derived biomass and biochar and its effect on the resulting activated carbon properties. In: SEPARATION AND PURIFICATION TECHNOLOGY, 319 (Art N° 124023).-
item.embargoEndDate2025-08-15-
item.fulltextWith Fulltext-
item.accessRightsEmbargoed Access-
crisitem.journal.issn1383-5866-
crisitem.journal.eissn1873-3794-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S1383586623009310-main.pdf
  Restricted Access
Published version1.22 MBAdobe PDFView/Open    Request a copy
SEPPUR-D-23-02180_AV.pdf
  Until 2025-08-15
Peer-reviewed author version2.45 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.