Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/4023
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.contributor.author | LAENEN, Annouschka | - |
dc.contributor.author | VANGENEUGDEN, Tony | - |
dc.date.accessioned | 2007-12-07T14:40:25Z | - |
dc.date.available | 2007-12-07T14:40:25Z | - |
dc.date.issued | 2007 | - |
dc.identifier.citation | JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 17(4). p. 595-627 | - |
dc.identifier.issn | 1054-3406 | - |
dc.identifier.uri | http://hdl.handle.net/1942/4023 | - |
dc.description.abstract | It is shown how hierarchical biomedical data, such as coming from longitudinal clinical trials, meta-analyses, or a combination of both, can be used to provide evidence for quantitative strength of reliability, agreement, generalizability, and related measures that derive from association concepts. When responses are of a continuous, Gaussian type, the linear mixed model is shown to be a versatile framework. At the same time, the framework is embedded in the generalized linear mixed models, such that non-Gaussian, e.g., binary, outcomes can be studied as well. Similarities and, above all, important differences are studied. All developments are exempli. ed using clinical studies in schizophrenia, with focus on the endpoints Clinician's Global Impression (CGI) or Positive and Negative Syndrome Scale (PANSS). | - |
dc.description.sponsorship | The authors are grateful to Johnson & Johnson Pharmaceutical Research & Development for kind permission to use their data. We gratefully acknowledge support from Belgian IUAP/PAI network “Statistical Techniques and Modeling for Complex Substantive Questions with Complex Data”. | - |
dc.language.iso | en | - |
dc.publisher | TAYLOR & FRANCIS INC | - |
dc.rights | © Taylor & Francis Group, LLC | - |
dc.subject.other | generalizability; generalized linear mixed model; linear mixed model; longitudinal data; psychiatry; rating scale; reliability; repeated measurements; schizophrenia.retest. | - |
dc.subject.other | generalizability; generalized linear mixed model; linear mixed model; longitudinal data; psychiatry; rating scale; reliability; repeated measurements; schizophrenia | - |
dc.title | Estimating reliability and generalizability from hierarchical biomedical data | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 627 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 595 | - |
dc.identifier.volume | 17 | - |
local.format.pages | 33 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Hasselt Univ, Ctr Stat, B-3590 Diepenbeek, Belgium. Tibottec, Mechelen, Belgium.MOLENBERGHS, G, Hasselt Univ, Ctr Stat, Agoralaan 1, B-3590 Diepenbeek, Belgium.geert.molenberghs@uhasselt.be | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1080/10543400701329448 | - |
dc.identifier.isi | 000248315300005 | - |
item.accessRights | Restricted Access | - |
item.contributor | MOLENBERGHS, Geert | - |
item.contributor | LAENEN, Annouschka | - |
item.contributor | VANGENEUGDEN, Tony | - |
item.validation | ecoom 2008 | - |
item.fullcitation | MOLENBERGHS, Geert; LAENEN, Annouschka & VANGENEUGDEN, Tony (2007) Estimating reliability and generalizability from hierarchical biomedical data. In: JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 17(4). p. 595-627. | - |
item.fulltext | With Fulltext | - |
crisitem.journal.issn | 1054-3406 | - |
crisitem.journal.eissn | 1520-5711 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
molenberghs2007.pdf Restricted Access | Published version | 765.01 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.