Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/4026
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFAES, Christel-
dc.contributor.authorAERTS, Marc-
dc.contributor.authorGEYS, Helena-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2007-12-07T14:46:10Z-
dc.date.available2007-12-07T14:46:10Z-
dc.date.issued2007-
dc.identifier.citationRISK ANALYSIS, 27(1). p. 111-123-
dc.identifier.issn0272-4332-
dc.identifier.urihttp://hdl.handle.net/1942/4026-
dc.description.abstractQuantitative risk assessment involves the determination of a safe level of exposure. Recent techniques use the estimated dose-response curve to estimate such a safe dose level. Although such methods have attractive features, a low-dose extrapolation is highly dependent on the model choice. Fractional polynomials,((1)) basically being a set of (generalized) linear models, are a nice extension of classical polynomials, providing the necessary flexibility to estimate the dose-response curve. Typically, one selects the best-fitting model in this set of polynomials and proceeds as if no model selection were carried out. We show that model averaging using a set of fractional polynomials reduces bias and has better precision in estimating a safe level of exposure (say, the benchmark dose), as compared to an estimator from the selected best model. To estimate a lower limit of this benchmark dose, an approximation of the variance of the model-averaged estimator, as proposed by Burnham and Anderson,((2)) can be used. However, this is a conservative method, often resulting in unrealistically low safe doses. Therefore, a bootstrap-based method to more accurately estimate the variance of the model averaged parameter is proposed.-
dc.description.sponsorshipWe gratefully acknowledge support from the Institute for the Promotion of Innovation by Science and Technology (IWT) in Flanders, Belgium and from the IAP research network nr P5/24 of the Belgian Government (Belgian Science Policy).-
dc.language.isoen-
dc.publisherBLACKWELL PUBLISHING-
dc.rights(C) 2007 Society for Risk Analysis-
dc.subject.otherbenchmark dose; fractional polynomials; model averaging; risk assessment-
dc.subject.otherbenchmark dose; fractional polynomials; model averaging; risk assessment-
dc.titleModel averaging using fractional polynomials to estimate a safe level of exposure-
dc.typeJournal Contribution-
dc.identifier.epage123-
dc.identifier.issue1-
dc.identifier.spage111-
dc.identifier.volume27-
local.format.pages13-
local.bibliographicCitation.jcatA1-
dc.description.notesHasselt Univ, Ctr Stat, Diepenbeek, Belgium. Johnson & Johnson, PRD Biometr & Clin Informat, Beerse, Belgium.FAES, C, Hasselt Univ, Ctr Stat, Agoralaan 1, Diepenbeek, Belgium.christel.faes@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1111/j.1539-6924.2006.00863.x-
dc.identifier.isi000244798100012-
item.validationecoom 2008-
item.contributorFAES, Christel-
item.contributorAERTS, Marc-
item.contributorGEYS, Helena-
item.contributorMOLENBERGHS, Geert-
item.fullcitationFAES, Christel; AERTS, Marc; GEYS, Helena & MOLENBERGHS, Geert (2007) Model averaging using fractional polynomials to estimate a safe level of exposure. In: RISK ANALYSIS, 27(1). p. 111-123.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn0272-4332-
crisitem.journal.eissn1539-6924-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Faes_et_al-2007-Risk_Analysis.pdf
  Restricted Access
Published version397.31 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.