Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/4044
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDE MAESSCHALCK, Peter-
dc.date.accessioned2007-12-07T15:02:10Z-
dc.date.available2007-12-07T15:02:10Z-
dc.date.issued2007-
dc.identifier.citationJOURNAL OF DIFFERENTIAL EQUATIONS, 238(2). p. 338-365-
dc.identifier.issn0022-0396-
dc.identifier.urihttp://hdl.handle.net/1942/4044-
dc.description.abstractBy applying geometric techniques to real analytic singularly perturbed vector fields on the plane, we develop a way to give a bound on the Gevrey type of the Taylor development of canard manifolds at degenerate planar turning points. By blowing up the phase space at the turning point, we find asymptotic estimates even when such expansions w.r.t. traditional phase space variables do not exist. The asymptotic estimates are then used to give a sufficient and necessary condition on the existence of (local) canard solutions.-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleGevrey properties of real planar singularly perturbed systems-
dc.typeJournal Contribution-
dc.identifier.epage365-
dc.identifier.issue2-
dc.identifier.spage338-
dc.identifier.volume238-
local.format.pages28-
local.bibliographicCitation.jcatA1-
dc.description.notesHasselt Univ, B-3590 Diepenbeek, Belgium.DE MAESSCHALCK, P, Hasselt Univ, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.peter.demaesschalck@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.crma.2004.12.020-
dc.identifier.isi000248351000003-
item.validationecoom 2008-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
item.fullcitationDE MAESSCHALCK, Peter (2007) Gevrey properties of real planar singularly perturbed systems. In: JOURNAL OF DIFFERENTIAL EQUATIONS, 238(2). p. 338-365.-
crisitem.journal.issn0022-0396-
crisitem.journal.eissn1090-2732-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.