Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/40602
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHAMED, Hamid-
dc.contributor.authorYusuf, Marwan-
dc.contributor.authorSuliga, Marek-
dc.contributor.authorGHALAMI CHOOBAR, Behnam-
dc.contributor.authorKostos, Ryan-
dc.contributor.authorSAFARI, Momo-
dc.date.accessioned2023-07-14T14:46:57Z-
dc.date.available2023-07-14T14:46:57Z-
dc.date.issued2023-
dc.date.submitted2023-07-06T07:42:05Z-
dc.identifier.citationBatteries & Supercaps, 6 (9) (Art N° e202300140)-
dc.identifier.urihttp://hdl.handle.net/1942/40602-
dc.description.abstractThe Incremental Capacity (IC) is a rich source of data for the state-of-health estimation of lithium-ion batteries. This data is typically collected during a low C-rate (dis)charge of the battery which is not representative of many real-world applications outside the research laboratories. Here, this limitation is showcased to be mitigated by employing a new feature-extraction technique applied to a large dataset including 105 batteries with cycle lives ranging from 158 to 1637 cycles. The state-of-health of these batteries is successfully predicted with a mean-absolute-percentage error below 0.7 % by using three regression models of support vector regressor, multi-layer perceptron, and random forest. The methodologies proposed in this work facilitate the development of accurate IC-based state-of-health predictors for lithium-ion batteries in on-board applications.-
dc.description.sponsorshipThis work was supported by funding from the European Union’s Horizon 2020 research and innovation program for the Current Direct project under grant agreement No. 963603.-
dc.language.isoen-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.rights2023 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH-
dc.subject.otherbattery-
dc.subject.otherincremental capacity-
dc.subject.otherstate of health-
dc.titleAn Incremental Capacity Analysis-based State-of-health Estimation Model for Lithium-ion Batteries in High-power Applications-
dc.typeJournal Contribution-
dc.identifier.issue9-
dc.identifier.volume6-
local.format.pages8-
local.bibliographicCitation.jcatA1-
local.publisher.placePOSTFACH 101161, 69451 WEINHEIM, GERMANY-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnre202300140-
local.type.programmeH2020-
local.relation.h2020963603-
dc.identifier.doi10.1002/batt.202300140-
dc.identifier.isiWOS:001011873900001-
local.provider.typeWeb of Science-
local.uhasselt.internationalno-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationHAMED, Hamid; Yusuf, Marwan; Suliga, Marek; GHALAMI CHOOBAR, Behnam; Kostos, Ryan & SAFARI, Momo (2023) An Incremental Capacity Analysis-based State-of-health Estimation Model for Lithium-ion Batteries in High-power Applications. In: Batteries & Supercaps, 6 (9) (Art N° e202300140).-
item.contributorHAMED, Hamid-
item.contributorYusuf, Marwan-
item.contributorSuliga, Marek-
item.contributorGHALAMI CHOOBAR, Behnam-
item.contributorKostos, Ryan-
item.contributorSAFARI, Momo-
item.validationecoom 2024-
crisitem.journal.eissn2566-6223-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

12
checked on Jan 30, 2026

WEB OF SCIENCETM
Citations

10
checked on Feb 9, 2026

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.