Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/40701
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | DE MAESSCHALCK, Peter | - |
dc.contributor.author | HUZAK, Renato | - |
dc.contributor.author | JANSSENS, Ansfried | - |
dc.contributor.author | Radunovic, Goran | - |
dc.date.accessioned | 2023-08-21T11:07:27Z | - |
dc.date.available | 2023-08-21T11:07:27Z | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-21T07:03:15Z | - |
dc.identifier.citation | Qualitative Theory of Dynamical Systems, 22 (4) (Art N° 154) | - |
dc.identifier.issn | 1575-5460 | - |
dc.identifier.uri | http://hdl.handle.net/1942/40701 | - |
dc.description.abstract | In planar slow–fast systems, fractal analysis of (bounded) sequences in R has proved important for detection of the first non-zero Lyapunov quantity in singular Hopf bifurcations, determination of the maximum number of limit cycles produced by slow–fast cycles, defined in the finite plane, etc. One uses the notion of Minkowski dimension of sequences generated by slow relation function. Following a similar approach, together with Poincaré–Lyapunov compactification, in this paper we focus on a fractal analysis near infinity of the slow–fast generalized Liénard equations. We extend the definition of the Minkowski dimension to unbounded sequences. This helps us better understand the fractal nature of slow–fast cycles that are detected inside the slow–fast Liénard equations and contain a part at infinity. | - |
dc.description.sponsorship | The research of R. Huzak and G. Radunovi´c was supported by: Croatian Science Foundation (HRZZ) grant PZS-2019-02-3055 from “Research Cooperability” program funded by the European Social Fund. Additionally, the research of G. Radunovi´c was partially supported by the HRZZ grant UIP-2017- 05-1020. | - |
dc.language.iso | en | - |
dc.publisher | SPRINGER BASEL AG | - |
dc.rights | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023 | - |
dc.subject.other | Poincaré–Lyapunov compactification | - |
dc.subject.other | Slow–fast Liénard equations | - |
dc.subject.other | Minkowski dimension | - |
dc.subject.other | Slow relation function | - |
dc.title | Minkowski Dimension and Slow–Fast Polynomial Liénard Equations Near Infinity | - |
dc.type | Journal Contribution | - |
dc.identifier.issue | 4 | - |
dc.identifier.volume | 22 | - |
local.format.pages | 39 | - |
local.bibliographicCitation.jcat | A1 | - |
local.publisher.place | PICASSOPLATZ 4, BASEL 4052, SWITZERLAND | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.bibliographicCitation.artnr | 154 | - |
dc.identifier.doi | 10.1007/s12346-023-00854-4 | - |
dc.identifier.isi | 001051831200001 | - |
dc.identifier.eissn | 1662-3592 | - |
local.provider.type | - | |
local.uhasselt.international | yes | - |
item.contributor | DE MAESSCHALCK, Peter | - |
item.contributor | HUZAK, Renato | - |
item.contributor | JANSSENS, Ansfried | - |
item.contributor | Radunovic, Goran | - |
item.fullcitation | DE MAESSCHALCK, Peter; HUZAK, Renato; JANSSENS, Ansfried & Radunovic, Goran (2023) Minkowski Dimension and Slow–Fast Polynomial Liénard Equations Near Infinity. In: Qualitative Theory of Dynamical Systems, 22 (4) (Art N° 154). | - |
item.accessRights | Open Access | - |
item.fulltext | With Fulltext | - |
item.validation | ecoom 2024 | - |
crisitem.journal.issn | 1575-5460 | - |
crisitem.journal.eissn | 1662-3592 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
VersionPaper.pdf | Peer-reviewed author version | 915.46 kB | Adobe PDF | View/Open |
s12346-023-00854-4.pdf Restricted Access | Published version | 1.88 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.