Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/40701
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDE MAESSCHALCK, Peter-
dc.contributor.authorHUZAK, Renato-
dc.contributor.authorJANSSENS, Ansfried-
dc.contributor.authorRadunovic, Goran-
dc.date.accessioned2023-08-21T11:07:27Z-
dc.date.available2023-08-21T11:07:27Z-
dc.date.issued2023-
dc.date.submitted2023-08-21T07:03:15Z-
dc.identifier.citationQualitative Theory of Dynamical Systems, 22 (4) (Art N° 154)-
dc.identifier.issn1575-5460-
dc.identifier.urihttp://hdl.handle.net/1942/40701-
dc.description.abstractIn planar slow–fast systems, fractal analysis of (bounded) sequences in R has proved important for detection of the first non-zero Lyapunov quantity in singular Hopf bifurcations, determination of the maximum number of limit cycles produced by slow–fast cycles, defined in the finite plane, etc. One uses the notion of Minkowski dimension of sequences generated by slow relation function. Following a similar approach, together with Poincaré–Lyapunov compactification, in this paper we focus on a fractal analysis near infinity of the slow–fast generalized Liénard equations. We extend the definition of the Minkowski dimension to unbounded sequences. This helps us better understand the fractal nature of slow–fast cycles that are detected inside the slow–fast Liénard equations and contain a part at infinity.-
dc.description.sponsorshipThe research of R. Huzak and G. Radunovi´c was supported by: Croatian Science Foundation (HRZZ) grant PZS-2019-02-3055 from “Research Cooperability” program funded by the European Social Fund. Additionally, the research of G. Radunovi´c was partially supported by the HRZZ grant UIP-2017- 05-1020.-
dc.language.isoen-
dc.publisherSPRINGER BASEL AG-
dc.rightsThe Author(s), under exclusive licence to Springer Nature Switzerland AG 2023-
dc.subject.otherPoincaré–Lyapunov compactification-
dc.subject.otherSlow–fast Liénard equations-
dc.subject.otherMinkowski dimension-
dc.subject.otherSlow relation function-
dc.titleMinkowski Dimension and Slow–Fast Polynomial Liénard Equations Near Infinity-
dc.typeJournal Contribution-
dc.identifier.issue4-
dc.identifier.volume22-
local.format.pages39-
local.bibliographicCitation.jcatA1-
local.publisher.placePICASSOPLATZ 4, BASEL 4052, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr154-
dc.identifier.doi10.1007/s12346-023-00854-4-
dc.identifier.isi001051831200001-
dc.identifier.eissn1662-3592-
local.provider.typePdf-
local.uhasselt.internationalyes-
item.contributorDE MAESSCHALCK, Peter-
item.contributorHUZAK, Renato-
item.contributorJANSSENS, Ansfried-
item.contributorRadunovic, Goran-
item.fullcitationDE MAESSCHALCK, Peter; HUZAK, Renato; JANSSENS, Ansfried & Radunovic, Goran (2023) Minkowski Dimension and Slow–Fast Polynomial Liénard Equations Near Infinity. In: Qualitative Theory of Dynamical Systems, 22 (4) (Art N° 154).-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2024-
crisitem.journal.issn1575-5460-
crisitem.journal.eissn1662-3592-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
VersionPaper.pdfPeer-reviewed author version915.46 kBAdobe PDFView/Open
s12346-023-00854-4.pdf
  Restricted Access
Published version1.88 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.