Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/40853
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVERCRUYSSE, Willem-
dc.contributor.authorKUNNEN, Kris-
dc.contributor.authorGomes, Caio Laurino-
dc.contributor.authorMARCHAL, Wouter-
dc.contributor.authorCUYPERS, Ann-
dc.contributor.authorVANDAMME, Dries-
dc.date.accessioned2023-09-11T13:27:47Z-
dc.date.available2023-09-11T13:27:47Z-
dc.date.issued2023-
dc.date.submitted2023-09-11T09:06:08Z-
dc.identifier.citationWaste and Biomass Valorization,-
dc.identifier.issn1877-2641-
dc.identifier.urihttp://hdl.handle.net/1942/40853-
dc.description.abstractCommon ivy, Hedera helix L., could be a potential feedstock for biochar production based on its physicochemical characterization. However, this has not been supported by plant-growth experiments yet. Therefore, this study aims to provide insight into possible correlations between common ivy biochar's physicochemical characteristics and plant development, for the first time. Lab-scale 96-well plant growth experiments were performed on Arabidopsis thaliana seedlings, using common-ivy based biochars produced at 400 and 700 °C and with and without valuable compound extraction before pyrolysis. Potassium leaching from the biochars caused the growth medium's pH and conductivity to increase significantly after 7 cultivation days. This leaching caused the plants to express initial growth stress responses (Pearson = 0.930), which was proven by changes in their cell cycle regulation. Further cultivation, 7-10 days, showed total recovery of the seedlings subjected to biochars produced at 400 °C. Moreover, significant increases in plant fresh weight were established at 1% biochar concentration. Besides that, biochars produced at 700 °C did not significantly affect plant development compared to the control group due to the decreased phosphate availability of the growth medium. In conclusion, low-temperature (400 °C) outperform high-temperature (700 °C) biochars, and valuable compound extraction before pyrolysis does not impact the biochar performance. Graphical Abstract Keywords Common ivy · Arabidopsis thaliana · Biochar · Plant growth · Nutrient leaching Statement of novelty This study provides novel insights into the correlation(s) between important biochar functional properties (leaching of nutrients, presence of PAHs, ...) and the growth of plants cultivated in a liquid medium. As such, both phenotypical properties (root length and plant fresh weight) and nuclear DNA contents (plant ploidy levels) were examined in great detail using state-of-the-art analysis methodologies. Additionally , for the first time, biochars produced from a promising new bioresource, common ivy., were tested as potential sustainable fertilizers. Furthermore, to add to the novelty of this study, valuable compound extractions of the biomass Extended author information available on the last page of the article-
dc.description.sponsorshipThis work was fnancially supported by Research Foundation Flanders (FWO – SB-1S92022N). This work was financially supported by Research Foundation Flanders (FWO – SB-1S92022N). We would like to acknowledge the technicians that have supported and executed the analyses in this study: Greet Cuyvers and Elsy Thijssen for ICP-OES analysis and Jenny Put for Ion Chromatography.-
dc.language.isoen-
dc.publisherSpringer Nature-
dc.rightsSubscirption Article The Author(s), under exclusive licence to Springer Nature B.V. 2023-
dc.subject.otherCommon ivy-
dc.subject.otherArabidopsis thaliana-
dc.subject.otherBiochar-
dc.subject.otherPlant growth-
dc.subject.otherNutrient leaching-
dc.titleCommon Ivy (Hedera helix L.) Derived Biochar’s Potential as a Substrate Amendment: Effects of Leached Nutrients on Arabidopsis thaliana Plant Development-
dc.typeJournal Contribution-
local.bibliographicCitation.jcatA1-
dc.description.notesVandamme, D (corresponding author), Hasselt Univ, Inst Mat Res Imo Imomec, Analyt & Circular Chem, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.-
local.publisher.placeVAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS-
dc.relation.references1. Vercruysse, W., Smeets, J., Haeldermans, T., Joos, B., Hardy, A., Samyn, P., Yperman, J., Vanreppelen, K., Carleer, R., Adriaensens, P., Marchal, W., Vandamme, D.: Biochar from raw and spent common ivy: impact of preprocessing and pyrolysis temperature on biochar properties. J. Anal. Appl. Pyrolysis 159, 105294 (2021). https://doi.org/10.1016/j.jaap.2021.105294 2. Bezruk, I., Marksa, M., Georgiyants, V., Ivanauskas, L., Raudone, L.: Phytogeographical profling of ivy leaf (Hedera helix L.). Ind. Crops Prod. 154, 112713 (2020). https://doi.org/10.1016/j.indcr op.2020.112713 3. F. Runkel, W. Schneider, O. Schmidt, G.M. Engelhard, United States Patent: Process for preparing an extract from ivy leaves, 2011. https://doi.org/10.1038/incomms1464. 4. Roşca-Casian, O., Mircea, C., Vlase, L., Gheldiu, A.-M., Teuca, D.T., Pârvu, M.: Chemical composition and antifungal activity of Hedera helix leaf ethanolic extract. Acta Biol. Hung 68, 196–207 (2017). https://doi.org/10.1556/018.68.2017.2.7 5. Lutsenko, Y., Bylka, W., Matławska, I., Darmohray, R.: Hedera helix as a medicinal plant. Herba Pol. 56, 84–96 (2010) 6. Dhyani, V., Bhaskar, T.: A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129, 695–716 (2018). https://doi.org/10.1016/j.renene.2017.04.035 7. El-Naggar, A., El-Naggar, A.H., Shaheen, S.M., Sarkar, B., Chang, S.X., Tsang, D.C.W., Rinklebe, J., Ok, Y.S.: Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: a review. J. Environ. Manage 241, 458–467 (2019). https://doi.org/10. 1016/j.jenvman.2019.02.044 8. Lehmann, J.: A handful of carbon. Nature 447, 143–144 (2007). https://doi.org/10.1038/447143a 9. Laghari, M., Müller-Stöver, D.S., Puig-Arnavat, M., Thomsen, T.P., Henriksen, U.B.: Evaluation of biochar post-process treatments to produce soil enhancers and phosphorus fertilizers at a single plant. Waste Biomass Valoriz. 12, 5517–5532 (2021). https://doi.org/10.1007/S12649-021-01358-5/TABLES/6 10. Wang, H., Garg, A., Ping, Y., Sreedeep, S., Chen, R.: Efects of biochar derived from coconut shell on soil hydraulic properties under salt stress in roadside bioretention. Waste Biomass Valoriz. 1, 1–18 (2022). https://doi.org/10.1007/ s12649-022-01877-9 11. Xu, X., Zhao, Y., Sima, J., Zhao, L., Mašek, O., Cao, X.: Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review. Bioresour. Technol. 241, 887–899 (2017). https://doi.org/10.1016/J.BIORTECH.2017.06.023 12. García, A.C., Tavares, O.C.H., de Oliveira, D.F.: Biochar as agricultural alternative to protect the rice plant growth in fragile sandy soil contaminated with cadmium. Biocatal. Agric. Biotechnol. 29, 101829 (2020). https://doi.org/10.1016/j.bcab.2020.101829 13. Mierzwa-Hersztek, M., Wolny-Koładka, K., Gondek, K., Gałązka, A., Gawryjołek, K.: Efect of coapplication of biochar and nutrients on microbiocenotic composition, dehydrogenase activity index and chemical properties of sandy soil. Waste Biomass Valoriz. 11, 3911–3923 (2020). https://doi.org/10.1007/S12649-019- 00757-Z/FIGURES/3 14. Zhang, X., Zhao, B., Liu, H., Zhao, Y., Li, L.: Efects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environ. Technol. Innov. 26, 102288 (2022). https://doi.org/10. 1016/J.ETI.2022.102288 15. Joseph, S., Cowie, A.L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M.L., Graber, E.R., Ippolito, J.A., Kuzyakov, Y., Luo, Y., Ok, Y.S., Palansooriya, K.N., Shepherd, J., Stephens, S., Weng, Z., Lehmann, J.: How biochar works, and when it doesn’t: a review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 13, 1731–1764 (2021). https://doi.org/10.1111/gcbb.12885 16. Galbraith, D.W., Harkins, K.R., Knapp, S.: Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiol. 96, 985–989 (1991). https://doi.org/10.1104/pp.96.3.985 17. Hendrix, S., Keunen, E., Mertens, A.I.G., Beemster, G.T.S., Vangronsveld, J., Cuypers, A.: Cell cycle regulation in diferent leaves of Arabidopsis thaliana plants grown under control and cadmium-exposed conditions. Environ. Exp. Bot. 155, 441–452 (2018). https://doi.org/10.1016/j.envexpbot.2018.06.026 18. Gegas, V.C., Wargent, J.J., Pesquet, E., Granqvist, E., Paul, N.D., Doonan, J.H.: Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B. J. Exp. Bot. 65, 2757–2766 (2014). https://doi.org/10.1093/jxb/ ert473 Waste and Biomass Valorization 1 3 19. Pacey, E.K., Maherali, H., Husband, B.C.: Endopolyploidy is associated with leaf functional traits and climate variation in Arabidopsis thaliana. Appl. Plant Sci. 107, 993–1003 (2020). https://doi.org/10.1002/ajb2.1508 20. Huybrechts, M., Hendrix, S., Bertels, J., Beemster, G.T.S., Vandamme, D., Cuypers, A.: Spatial analysis of the rice leaf growth zone under controlled and cadmium-exposed conditions. Environ. Exp. Bot. 177, 104120 (2020). https://doi.org/10.1016/J.ENVEX PBOT.2020.104120 21. Cookson, S.J., Radziejwoski, A., Granier, C.: Cell and leaf size plasticity in Arabidopsis: what is the role of endoreduplication? Plant Cell Environ. 29, 1273–1283 (2006). https://doi.org/10. 1111/j.1365-3040.2006.01506.x 22. Manikandan, S.: Data transformation. J. Pharmacol. Pharmacother. 1, 126–127 (2010). https://doi.org/10.4103/0976-500X. 72373 23. Stals, M., Thijssen, E., Vangronsveld, J., Carleer, R., Schreurs, S., Yperman, J.: Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: infuence of temperature, entrained fow and wood/leaves blended pyrolysis on the behaviour of heavy metals. J. Anal. Appl. Pyrolysis (2010). https://doi.org/10.1016/j. jaap.2009.09.003 24. Lataf, A., Jozefczak, M., Vandecasteele, B., Viaene, J., Schreurs, S., Carleer, R., Yperman, J., Marchal, W., Cuypers, A., Vandamme, D.: The efect of pyrolysis temperature and feedstock on biochar agronomic properties. J. Anal. Appl. Pyrolysis 168, 105728 (2022). https://doi.org/10.1016/j.jaap.2022.105728 25. Gao, X., Yani, S., Wu, H.: Pyrolysis of spent biomass from mallee leaf steam distillation: biochar properties and recycling of inherent inorganic nutrients. Energy Fuel 28, 4642–4649 (2014). https:// doi.org/10.1021/ef501114v 26. Yani, S., Gao, X., Grayling, P., Wu, H.: Steam distillation of mallee leaf: extraction of 1,8-cineole and changes in the fuel properties of spent biomass. Fuel 133, 341–349 (2014). https://doi.org/ 10.1016/j.fuel.2014.05.030 27. Zhao, L., Cao, X., Mašek, O., Zimmerman, A.: Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard Mater. 256–257, 1 (2013). https://doi. org/10.1016/j.jhazmat.2013.04.015 28. Sun, J., He, F., Pan, Y., Zhang, Z.: Efects of pyrolysis temperature and residence time on physicochemical properties of diferent biochar types. Acta Agric. Scand. Sect. B Soil. Plant. Sci. 67, 12–22 (2017). https://doi.org/10.1080/09064710.2016.1214745 29. ASTM International: Standard test method for determination of ethanol extractives in biomass. ASTM Stand. 11, 1–2 (2004) 30. Kowalski, T., Ludwig, C., Wokaun, A.: Qualitative evaluation of alkali release during the pyrolysis of biomass. Energy Fuel 21, 3017–3022 (2007). https://doi.org/10.1021/ef070094z 31. Krishnaveni, D., Kannan, P., Senthilkumar, A.N., Raja, K.: Safe disposal of phosphate for eutrophication control by redgram stalk biochar with subsequent power generation. Environ. Technol. Innov. 27, 102389 (2022). https://doi.org/10.1016/j.eti.2022. 102389 32. Artiola, J.F., Rasmussen, C., Freitas, R.: Efects of a biocharamended alkaline soil on the growth of romaine lettuce and bermudagrass. Soil Sci. 177, 561–570 (2012). https://doi.org/10. 1097/SS.0b013e31826ba908 33. Zeng, Z., Huang, H., Han, N., Huang, C.Y., Langridge, P., Bian, H., Zhu, M.: Endopolyploidy levels in barley vary in diferent root types and signifcantly decrease under phosphorus defciency. Plant Physiol. Biochem. 118, 11–21 (2017). https://doi.org/10. 1016/j.plaphy.2017.06.004 34. Zhao, W., Faust, F., Schubert, S.: Potassium is a potential toxicant for Arabidopsis thaliana under saline conditions. J. Plant Nutr. Soil Sci. 183, 455–467 (2020). https://doi.org/10.1002/jpln.20190 0491 35. Yin, X., Wang, X., Komatsu, S.: Phosphoproteomics: protein phosphorylation in regulation of seed germination and plant growth. Curr. Protein Pept. Sci. 19, 401–412 (2018). https://doi. org/10.2174/1389203718666170209151048 36. Clarke, L.J.: Constraining bioavailable polyaromatic hydrocarbons efectively during the production and application of biochar. Environ. Technol. Innov. 24, 101838 (2021). https://doi.org/10.1016/J. ETI.2021.101838 37. European Union: Regulation(EU) 2019/1009 of the european parliament and of the council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products. European Union, Brussels (2019) 38. Wang, M., Zheng, Q., Shen, Q., Guo, S.: The critical role of potassium in plant stress response. Int. J. Mol. Sci. 14, 7370–7390 (2013). https://doi.org/10.3390/ijms14047370-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusEarly view-
dc.identifier.doi10.1007/s12649-023-02266-6-
dc.identifier.isi001064345300001-
dc.identifier.eissn1877-265X-
local.provider.typePdf-
local.description.affiliation[Vercruysse, Willem; Marchal, Wouter; Vandamme, Dries] Hasselt Univ, Inst Mat Res Imo Imomec, Analyt & Circular Chem, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Kunnen, Kris; Cuypers, Ann] Hasselt Univ, Ctr Environm Sci CMK, Environm Biol, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Gomes, Caio Laurino] Univ Sao Paulo, Dept Engenharie Quim, Inst Quim, Av Prof Lineu Prestes,748, BR-05508000 Sao Paulo, SP, Brazil.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.fullcitationVERCRUYSSE, Willem; KUNNEN, Kris; Gomes, Caio Laurino; MARCHAL, Wouter; CUYPERS, Ann & VANDAMME, Dries (2023) Common Ivy (Hedera helix L.) Derived Biochar’s Potential as a Substrate Amendment: Effects of Leached Nutrients on Arabidopsis thaliana Plant Development. In: Waste and Biomass Valorization,.-
item.accessRightsRestricted Access-
item.contributorVERCRUYSSE, Willem-
item.contributorKUNNEN, Kris-
item.contributorGomes, Caio Laurino-
item.contributorMARCHAL, Wouter-
item.contributorCUYPERS, Ann-
item.contributorVANDAMME, Dries-
crisitem.journal.issn1877-2641-
crisitem.journal.eissn1877-265X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
d9b8eb02-e25c-46ad-a925-b9a6ba25abcd.pdf
  Restricted Access
Early view926.31 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.