Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/4100
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFauvart, Maarten-
dc.contributor.authorBraeken, Kristien-
dc.contributor.authorDANIELS, Ruth-
dc.contributor.authorVos, Karen-
dc.contributor.authorNdayizeye, Maxime-
dc.contributor.authorNOBEN, Jean-Paul-
dc.contributor.authorROBBEN, Johan-
dc.contributor.authorVanderleyden, Jos-
dc.contributor.authorMichiels, Jan-
dc.date.accessioned2007-12-10T10:00:11Z-
dc.date.available2007-12-10T10:00:11Z-
dc.date.issued2007-
dc.identifier.citationBIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 1774(9). p. 1092-1098-
dc.identifier.issn1570-9639-
dc.identifier.urihttp://hdl.handle.net/1942/4100-
dc.description.abstractPhylogenetic analysis of the superfamily of D-2-hydroxyacid dehydrogenases identified the previously unrecognized cluster of glyoxylate/hydroxypyruvate reductases (GHPR). Based on the genome sequence of Rhizobium etli, the nodulating endosymbiont of the common bean plant, we predicted a putative 3-phosphoglycerate dehydrogenase to exhibit GHPR activity instead. The protein was overexpressed and purified. The enzyme is homodimeric under native conditions and is indeed capable of reducing both glyoxylate and hydroxypyruvate. Other substrates are phenylpyruvate and ketobutyrate. The highest activity was observed with glyoxylate and phenylpyruvate, both having approximately the same k(cat)/K-m ratio. This kind of substrate specificity has not been reported previously for a GHPR. The optimal pH for the reduction of phenylpyruvate to phenyllactate is pH 7. These data lend support to the idea of predicting enzymatic substrate specificity based on phylogenetic clustering. (c) 2007 Elsevier B.V. All rights reserved.-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subject.otherphenylpyruvate; phenyllactate; glyoxylate; glycolate; hydroxypyruvate; D-glycerate; D-2-hydroxyacid dehydrogenase; substrate specificity; phylogeny; rhizobium etli-
dc.titleIdentification of a novel glyoxylate reductase supports phylogeny-based enzymatic substrate specificity prediction-
dc.typeJournal Contribution-
dc.identifier.epage1098-
dc.identifier.issue9-
dc.identifier.spage1092-
dc.identifier.volume1774-
local.format.pages7-
local.bibliographicCitation.jcatA1-
dc.description.notesKatholieke Univ Leuven, Ctr Microbial & Plant Genet, B-3001 Heverlee, Belgium. Univ Hasselt, Biomed Onderzoek Inst, B-3590 Diepenbeek, Belgium.MICHIELS, J, Katholieke Univ Leuven, Ctr Microbial & Plant Genet, Kasteelpk Arenberg 20, B-3001 Heverlee, Belgium.jan.michiels@biw.kuleuven.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.bbapap.2007.06.009-
dc.identifier.isi000249840000003-
item.accessRightsClosed Access-
item.validationecoom 2008-
item.fulltextNo Fulltext-
item.fullcitationFauvart, Maarten; Braeken, Kristien; DANIELS, Ruth; Vos, Karen; Ndayizeye, Maxime; NOBEN, Jean-Paul; ROBBEN, Johan; Vanderleyden, Jos & Michiels, Jan (2007) Identification of a novel glyoxylate reductase supports phylogeny-based enzymatic substrate specificity prediction. In: BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 1774(9). p. 1092-1098.-
item.contributorFauvart, Maarten-
item.contributorBraeken, Kristien-
item.contributorDANIELS, Ruth-
item.contributorVos, Karen-
item.contributorNdayizeye, Maxime-
item.contributorNOBEN, Jean-Paul-
item.contributorROBBEN, Johan-
item.contributorVanderleyden, Jos-
item.contributorMichiels, Jan-
crisitem.journal.issn1570-9639-
crisitem.journal.eissn1878-1454-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.