Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/41275Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | FAES, Christel | |
| dc.contributor.author | Espinasse, Marina | |
| dc.date.accessioned | 2023-09-21T07:50:47Z | - |
| dc.date.available | 2023-09-21T07:50:47Z | - |
| dc.date.issued | 2023 | |
| dc.identifier.uri | http://hdl.handle.net/1942/41275 | - |
| dc.format.mimetype | Application/pdf | |
| dc.language | en | |
| dc.publisher | tUL | |
| dc.title | Bayesian distributed lag non-linear models (DLNM) to describe association between air pollution and COVID-19 in Belgium | |
| dc.type | Theses and Dissertations | |
| local.bibliographicCitation.jcat | T2 | |
| dc.description.notes | Master of Statistics and Data Science-Biostatistics | |
| local.type.specified | Master thesis | |
| item.fulltext | With Fulltext | - |
| item.contributor | Espinasse, Marina | - |
| item.fullcitation | Espinasse, Marina (2023) Bayesian distributed lag non-linear models (DLNM) to describe association between air pollution and COVID-19 in Belgium. | - |
| item.accessRights | Open Access | - |
| Appears in Collections: | Master theses | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 03eeca39-c676-44ad-9fce-0dc1f3f7917b.pdf | 7.62 MB | Adobe PDF | View/Open |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.