Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/41409
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPARION, Jonathan-
dc.contributor.authorSCAFFIDI, Romain-
dc.contributor.authorFlandre, Denis-
dc.contributor.authorBRAMMERTZ, Guy-
dc.contributor.authorVERMANG, Bart-
dc.date.accessioned2023-09-22T14:30:57Z-
dc.date.available2023-09-22T14:30:57Z-
dc.date.issued2023-
dc.date.submitted2023-09-20T11:40:29Z-
dc.identifier.citationIEEE EUROCON 2023 - 20th International Conference on Smart Technologies, IEEE, p. 99 -104-
dc.identifier.isbn9781665463973-
dc.identifier.urihttp://hdl.handle.net/1942/41409-
dc.description.abstractWe present a methodology to use low-temperature admittance measurements for characterizing defects in thin-film Cu(ln,Ga)(S,Se)2 solar cells, which is a major step towards increased performance. We develop the theory behind admittance spectroscopy at both room and low temperature, focusing on the so-called “loss-map” graphical representation. It allows to distinguish the entangled responses of different loss mechanisms and, combined with SCAPS 1- D simulations, leads to a refined interpretation of experimental admittance measurements. Using this methodology on experimental measurements, we identify the likely presence of an interface defect, and extract its activation energy (EA=0.093eV) and capture cross-section (σ=2.88⋅10−18cm2) .-
dc.language.isoen-
dc.publisherIEEE-
dc.subject.otherIndex Terms-Admittance spectroscopy-
dc.subject.otherCIGS-
dc.subject.otherthin-film PV-
dc.titleLow-temperature admittance spectroscopy for defect characterization in Cu(In,Ga)(S,Se)2 thin-film solar cells-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedate06-08 July-
local.bibliographicCitation.conferencenameIEEE EUROCON 2023 - 20th International Conference on Smart Technologies-
local.bibliographicCitation.conferenceplaceTorino, Italy-
dc.identifier.epage104-
dc.identifier.spage99-
local.bibliographicCitation.jcatC1-
local.publisher.placeXplore-
dc.relation.references1. T. D. Lee and A. U. Ebong, "A review of thin film solar cell technologies and challenges", Renewable and Sustainable Energy Reviews, vol. 70, pp. 1286-1297, Apr. 2017. 2. M. Ochoa, S. Buecheler, A. N. Tiwari and R. Carron, "Challenges and opportunities for an efficiency boost of next generation Cu(lnGa)Se2 solar cells: prospects for a paradigm shift", Energy and Environmental Science, vol. 13, no. 7, pp. 2047-2055, 2020. 3. G. Brammertz et al., "Bias-Dependent Admittance Spectroscopy of Thin-Film Solar Cells: Experiment and Simulation", IEEE Journal of Photovoltaics, vol. 10, no. 4, pp. 1102-1111, 2020. 4. Decock Koen, Defect related phenomena in chalcopyrite based solar cells, 2012. 5. C. León, J. M. Martin, J. Santamaría, J. Skarp, G. González-Diaz and F. Sanchez-Quesada, "Use of Kramers-Kronig transforms for the treatment of admittance spectroscopy data of p-n junctions containing traps", Journal of Applied Physics, vol. 79, no. 10, pp. 7830-7836, 1996. 6. J. Kneisel, K. Siemer, I. Luck and D. Bräunig, "Admittance spectroscopy of efficient CuInS2 thin film solar cells", J ournal of Applied Physics, vol. 88, no. 9, pp. 5474-5481, Nov. 2000. 7. T. Eisenbarth, T. Unold, R. Caballero, C. A. Kaufmann and H.-W. Schock, "Interpretation of admittance capacitance-voltage and current-voltage signatures in Cu(lnGa)Se2 thin film solar cells", Journal of Applied Physics, vol. 107, no. 3, pp. 034509, Feb. 2010. 8. J. Heath, P. Zabierowski, D. Abou-Ras, T. Kirchartz and U. Rau, "Capacitance Spectroscopy of Thin-Film Solar Cells" in Advanced Characterization Techniques for Thin Film Solar Cells, Wiley, pp. 81-105, 2011. 9. R. Herberholz, M. Igalson and H. W. Schock, "Distinction between bulk and interface states in CulnSe2/CdS/ZnO by space charge spectroscopy", Journal of Applied Physics, vol. 83, no. 1, pp. 318-325, Jan. 1998. 10. P. Krispin, "Single-level interface states in semiconductor structures investigated by admittance spectroscopy", Appl. Phys. Lett., vol. 70, no. 11, Mar. 1997. 11. T. Walter, R. Herberholz, C. Müller and H. W. Schock, "Determination of defect distributions from admittance measurements and application to Cu(lnGa)Se2 based heterojunctions", Journal of Applied Physics, vol. 80, no. 8, pp. 4411-4420, Oct. 1996. 12. D. Abou-Ras, T. Kirchartz and U. Rau, Advanced Characterization Techniques For Thin Film Solar Cells, Weinheim, Germany:Wiley, 2016. 13. J. V. Li, S. W. Johnston, Y. Yan and D. H. Levi, "Measuring temperature- dependent activation energy in thermally activated processes: A 2D Arrhenius plot method", Rev. Sci. Instrum., 2010. 14. J. V. Li and D. H. Levi, "Determining the defect density of states by temperature derivative admittance spectroscopy", Journal of Applied Physics, vol. 109, no. 8, Apr. 2011. 15. F. H. Seymour, V. Kaydanov and T. R. Ohno, "Simulated admittance spectroscopy measurements of high concentration deep level defects in CdTe thin-film solar cells", J. Appl. Phys., 2006. 16. J.-P. Colinge and C. A. Colinge, Physics of Semiconductor Devices, Kluwer Academic Publishers, 2002. 17. M. Burgelman, SCAPS: a Solar Cell Capacitance Simulator, Feb. 2021. 18. S. A. Ashter, "Mechanics of Materials" in Thermoforming of Single and Multilayer Laminates, Elsevier, pp. 123-145, 2014. 19. A. Krysztopa, M. Igalson, Y. Aida, J. K. Larsen, L. Gütay and S. Siebentritt, "Defect levels in the epitaxial and polycrystalline CuGaSe2 by photocurrent and capacitance methods", Journal of Applied Physics, vol. 110, no. 10, pp. 103711, Nov. 2011. 20. J. H. Scofield, "Effects of series resistance and inductance on solar cell admittance measurements", Solar Energy Materials and Solar Cells, vol. 37, no. 2, pp. 217-233, May 1995.-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.type.programmeH2020-
local.relation.h2020850937-
dc.identifier.doi10.1109/EUROCON56442.2023.10199008-
local.provider.typeCrossRef-
local.bibliographicCitation.btitleIEEE EUROCON 2023 - 20th International Conference on Smart Technologies-
local.uhasselt.internationalno-
item.fullcitationPARION, Jonathan; SCAFFIDI, Romain; Flandre, Denis; BRAMMERTZ, Guy & VERMANG, Bart (2023) Low-temperature admittance spectroscopy for defect characterization in Cu(In,Ga)(S,Se)2 thin-film solar cells. In: IEEE EUROCON 2023 - 20th International Conference on Smart Technologies, IEEE, p. 99 -104.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.contributorPARION, Jonathan-
item.contributorSCAFFIDI, Romain-
item.contributorFlandre, Denis-
item.contributorBRAMMERTZ, Guy-
item.contributorVERMANG, Bart-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Low-temperature_admittance_spectroscopy_for_defect_characterization_in_CuInGaSSe2_thin-film_solar_cells.pdf
  Restricted Access
Published version1.5 MBAdobe PDFView/Open    Request a copy
1570906288 final.pdfPeer-reviewed author version1.11 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.