Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/41410
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRoisin, Nicolas-
dc.contributor.authorColla, Marie-Stéphane-
dc.contributor.authorSCAFFIDI, Romain-
dc.contributor.authorPardoen, Thomas-
dc.contributor.authorFlandre, Denis-
dc.contributor.authorRaskin, Jean-Pierre-
dc.date.accessioned2023-09-22T14:39:41Z-
dc.date.available2023-09-22T14:39:41Z-
dc.date.issued2023-
dc.date.submitted2023-09-20T10:14:43Z-
dc.identifier.citationOPTICAL MATERIALS, 144 (Art N° 114347)-
dc.identifier.issn0925-3467-
dc.identifier.urihttp://hdl.handle.net/1942/41410-
dc.description.abstractA theoretical study of the band gap reduction under tensile stress is performed and validated through experimental measurements. First-principles calculations based on density functional theory (DFT) are performed for uniaxial stress applied in the [001], [110] and [111] directions. The calculated band gap reductions are equal to 126, 240 and 100 meV at 2% strain, respectively. Photoluminescence spectroscopy experiments are performed by deformation applied in the [110] direction. Microfabricated specimens have been deformed using an on-chip tensile technique up to 1% as confirmed by back-scattering Raman spectroscopy. A fitting correction based on the band gap fluctuation model has been used to eliminate the specimen interference signal and retrieve reliable values. Very good agreement is observed between first-principles theory and experimental results with a band gap reduction of, respectively, 93 and 91 meV when the silicon beam is deformed by 0.95% along the [110] direction.-
dc.description.sponsorshipComputational resources have been provided by the supercomputing facilities of the Université catholique de Louvain (CISM/UCL) and the Consortium des Équipements de Calcul Intensif en Fédération Wallonie Bruxelles (CÉCI) funded by the Fond de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under convention 2.5020.11 and by the Walloon Region. M.-S. Colla acknowledges the financial support of the Fond de la Recherche Scientifique de Belgique (F.R.S.-FNRS). N. Roisin acknowledges the help received for the first-principles simulations from G.-M. Rignanese and G. Brunin from Institute of Condensed Matter and Nanosciences (IMCN), Belgium. The authors acknowledge the help received from IMO-IMOMEC, the joint department of imec and UHasselt, to realize the photoluminescence measurements on the site of EnergyVille in Genk, Belgium, and especially the support provided by Dr. Guy Brammertz with the experimental setup and the EU ERC project (Uniting PV, H2020 research and innovation programme under grant agreement n◦ 715027) of Prof. Bart Vermang that funded the equipment.-
dc.language.isoen-
dc.publisherELSEVIER-
dc.rights2023 Elsevier B.V. All rights reserved.-
dc.subject.otherSilicon-
dc.subject.otherStrain-
dc.subject.otherDeformation-
dc.subject.otherPhotoluminescence-
dc.subject.otherFirst-principles-
dc.subject.otherBand gap-
dc.titleBand gap reduction in highly-strained silicon beams predicted by first-principles theory and validated using photoluminescence spectroscopy-
dc.typeJournal Contribution-
dc.identifier.volume144-
local.bibliographicCitation.jcatA1-
dc.description.notesRoisin, N (corresponding author), Catholic Univ Louvain, Inst Informat & Commun Technol Elect & Appl Math I, Pl Levant 3, B-1348 Louvain La Neuve, Belgium.-
dc.description.notesnicolas.roisin@uclouvain.be-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr114347-
local.type.programmeH2020-
local.relation.h2020715027-
dc.identifier.doi10.1016/j.optmat.2023.114347-
dc.identifier.isi001150018000001-
dc.identifier.eissn1873-1252-
local.provider.typeCrossRef-
local.description.affiliation[Roisin, Nicolas; Scaffidi, Romain; Flandre, Denis; Raskin, Jean-Pierre] Catholic Univ Louvain, Inst Informat & Commun Technol Elect & Appl Math I, Pl Levant 3, B-1348 Louvain La Neuve, Belgium.-
local.description.affiliation[Colla, Marie-Stephane; Pardoen, Thomas] Catholic Univ Louvain, Inst Mech Mat & Civil Engn IMMC, Pl Levant 2, B-1348 Louvain La Neuve, Belgium.-
local.description.affiliation[Scaffidi, Romain] UHasselt IMO IMOMEC, Martelarenlaan 42, B-3500 Hasselt, Belgium.-
local.description.affiliation[Scaffidi, Romain] Imec IMO IMOMEC, Thorpark, Poort Genk 8310 &8320, B-3600 Genk, Belgium.-
local.description.affiliation[Scaffidi, Romain] IMO IMOMEC, EnergyVille, Poort Genk 8310 &8320, B-3600 Genk, Belgium.-
local.uhasselt.internationalno-
item.fullcitationRoisin, Nicolas; Colla, Marie-Stéphane; SCAFFIDI, Romain; Pardoen, Thomas; Flandre, Denis & Raskin, Jean-Pierre (2023) Band gap reduction in highly-strained silicon beams predicted by first-principles theory and validated using photoluminescence spectroscopy. In: OPTICAL MATERIALS, 144 (Art N° 114347).-
item.fulltextWith Fulltext-
item.contributorRoisin, Nicolas-
item.contributorColla, Marie-Stéphane-
item.contributorSCAFFIDI, Romain-
item.contributorPardoen, Thomas-
item.contributorFlandre, Denis-
item.contributorRaskin, Jean-Pierre-
item.accessRightsEmbargoed Access-
item.embargoEndDate2024-10-01-
crisitem.journal.issn0925-3467-
crisitem.journal.eissn1873-1252-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
preprint.pdf
  Until 2024-10-01
Peer-reviewed author version2.59 MBAdobe PDFView/Open    Request a copy
published.pdf
  Restricted Access
Published version1.71 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.