Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/41635
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVERCRUYSSE, Willem-
dc.contributor.authorNOPPEN, Bernard-
dc.contributor.authorJOZEFCZAK, Marijke-
dc.contributor.authorHUYBRECHTS, Michiel-
dc.contributor.authorDERVEAUX, Elien-
dc.contributor.authorVandecasteele, Bart-
dc.contributor.authorCUYPERS, Ann-
dc.contributor.authorMARCHAL, Wouter-
dc.contributor.authorVANDAMME, Dries-
dc.date.accessioned2023-10-27T09:22:13Z-
dc.date.available2023-10-27T09:22:13Z-
dc.date.issued2023-
dc.date.submitted2023-10-27T05:57:50Z-
dc.identifier.citationACS Sustainable Chemistry & Engineering, 11 (39) , p. 14267 -14286-
dc.identifier.urihttp://hdl.handle.net/1942/41635-
dc.description.abstractCommon ivy (CI) or Hedera Helix L., is a clinging evergreen vine that can be cultivated on any vertical surface (walls, fences, tree trunks, etc.). In Europe, CI has been recommended by governments to plant in urban areas because it lowers urban heat island effects and improves urban air quality. Regular trimmings of these vertical greenery systems would be necessary, which would yield a potentially interesting novel biomass resource for urban biorefinery concepts. Furthermore, CI extracts contain pharmaceutically active compounds (e.g., hederacoside C and α-hederin), which constitute the active components of commercially available cough syrups. Moreover, research on their suitability to treat (lung) inflammations and suppress cancer tumor growth is ongoing and shows promise. CI extracts also have demonstrated potential for their application in the agricultural industry to serve as antifungal agents. Recently, postextracted residues of CI have shown to be a promising feedstock for green fertilizer production via slow pyrolysis. Moreover, a provisional sustainability assessment indicated that the proposed process would be both carbon- and energy-negative. Therefore, a novel circular biorefinery approach is proposed, which entails the lifecycle of CI, from cultivation in vertical ecosystems via refinery into bioproduct(s) and valuable nutrients, and then back into soil.-
dc.description.sponsorshipThe authors acknowledge Peter Boogaerts from GGGreen for providing insight in common ivy-based vertical growth systems. This work was financially supported by Research Foundation Flanders (FWO SB - 1S92022N).-
dc.language.isoen-
dc.publisher-
dc.rightsSubscription Article2023 American Chemical Society-
dc.subject.otherCommon ivy-
dc.subject.otherBiorefinery-
dc.subject.otherBiomass valorization-
dc.subject.otherSustainable resource management-
dc.titleCommon Ivy (Hedera Helix L.) as a Novel Green Resource in an Urban Biorefinery Concept-
dc.typeJournal Contribution-
dc.identifier.epage14286-
dc.identifier.issue39-
dc.identifier.spage14267-
dc.identifier.volume11-
local.bibliographicCitation.jcatA1-
local.publisher.place1155 16TH ST, NW, WASHINGTON, DC 20036 USA-
dc.relation.references(1) United Nations. 2022 Revision of World Population Prospects. https://population.un.org/wpp/ (accessed 2023-01-17). (2) Raji, B.; Tenpierik, M. J.; van den Dobbelsteen, A. The Impact of Greening Systems on Building Energy Performance: A Literature Review. Renew. Sustain. Energy Rev. 2015, 45, 610−623. (3) Zhang, X.; Chen, X.; Yue, Y.; Wang, S.; Zhao, B.; Huang, X.; Li, T.; Sun, Q.; Wang, J. Ecological Study on Global Health Effects Due to Source-Specific Ambient Fine Particulate Matter Exposure. Cite This Environ. Sci. Technol. 2023, 57, 1278. (4) Rizvi, S. H.; Alam, K.; Iqbal, M. J. Spatio -Temporal Variations in Urban Heat Island and Its Interaction with Heat Wave. J. Atmos. SolarTerrestrial Phys. 2019, 185, 50−57. (5) Besir, A. B.; Cuce, E. Green Roofs and Facades: A Comprehensive Review. Renew. Sustain. Energy Rev. 2018, 82, 915−939. (6) Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T. W.; Meili, N.; Burlando, P.; Katul, G. G.; Bou-Zeid, E. Magnitude of Urban Heat Islands Largely Explained by Climate and Population. Nature 2019, 573 (7772), 55−60. (7) Wong, N. H.; Tan, C. L.; Kolokotsa, D. D.; Takebayashi, H. Greenery as a Mitigation and Adaptation Strategy to Urban Heat. Nat. Rev. Earth Environ. 2021, 2 (3), 166−181. (8) He, C.; Qiu, K.; Pott, R. Reduction of Urban Traffic−Related Particulate Matter�Leaf Trait Matters. Environ. Sci. Pollut. Res. 2020, 27 (6), 5825−5844. (9) Sternberg, T.; Viles, H.; Cathersides, A.; Edwards, M. Dust Particulate Absorption by Ivy (Hedera Helix L) on Historic Walls in Urban Environments. Sci. Total Environ. 2010, 409, 162−168. (10) Manso, M.; Teotónio, I.; Silva, C. M.; Cruz, C. O. Green Roof and Green Wall Benefits and Costs: A Review of the Quantitative Evidence. Renew. Sustain. Energy Rev. 2021, 135, No. 110111. (11) Wang, R.; Helbich, M.; Yao, Y.; Zhang, J.; Liu, P.; Yuan, Y.; Liu, Y. Urban Greenery and Mental Wellbeing in Adults: Cross-Sectional Mediation Analyses on Multiple Pathways across Different Greenery Measures. Environ. Res. 2019, 176, No. 108535. (12) Rajesh Banu, J.; Preethi; Kavitha, S.; Tyagi, V. K.; Gunasekaran, M.; Karthikeyan, O. P.; Kumar, G. Lignocellulosic Biomass Based Biorefinery: A Successful Platform towards Circular Bioeconomy. Fuel 2021, 302 (March), No. 121086. (13) Lin, M.-W.; Chen, L.-Y.; Chuah, Y.-K. Investigation of A Potted Plant (Hedera Helix) with Photo-Regulation to Remove Volatile Formaldehyde for Improving Indoor Air Quality. Aerosol Air Qual. Res. 2017, 17, 2543−2554. (14) Coombes, M. A.; Viles, H. A.; Zhang, H. Thermal Blanketing by Ivy (Hedera Helix L.) Can Protect Building Stone from Damaging Frosts. Sci. Rep. 2018, 8 (1), 9834. (15) Sternberg, T.; Viles, H.; Cathersides, A. Evaluating the Role of Ivy (Hedera Helix) in Moderating Wall Surface Microclimates and Contributing to the Bioprotection of Historic Buildings. Build. Environ. 2011, 46 (2), 293−297. (16) Lutsenko, Y.; Bylka, W.; Matławska, I.; Darmohray, R. Hedera Helix as a Medicinal Plant. Herba Polym. 2010, 56 (1), 84−96. (17) Gülçin, I.; Mshvildadze, V.; Gepdiremen, A.; Elias, R. Antioxidant Activity of Saponins Isolated from Ivy: α-Hederin, Hederasaponin-C, Hederacolchiside-E and Hederacolchiside-F. Planta Med. 2004, 70 (6), 561−563. (18) Gepdiremen, A.; Mshvildadze, V.; Süleyman, H.; Elias, R. Acute Anti-Inflammatory Activity of Four Saponins Isolated from Ivy: AlphaHederin, Hederasaponin-C, Hederacolchiside-E and HederacolchisideF in Carrageenan-Induced Rat Paw Edema. Phytomedicine 2005, 12 (6−7), 440−444. ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Perspective https://doi.org/10.1021/acssuschemeng.3c02875 ACS Sustainable Chem. Eng. XXXX, XXX, XXX−XXX P (19) Wang, J.; Wu, D.; Zhang, J.; Liu, H.; Wu, J.; Dong, W. α-Hederin Induces Apoptosis of Esophageal Squamous Cell Carcinoma via an Oxidative and Mitochondrial-Dependent Pathway. Dig. Dis. Sci. 2019, 64 (12), 3528−3538. (20) Rosca-Casian, ̧ O.; Mircea, C.; Vlase, L.; Gheldiu, A.-M.; Teuca, D. T.; Parvu, ̂ M. Chemical Composition and Antifungal Activity of Hedera Helix Leaf Ethanolic Extract. Acta Biol. Hung. 2017, 68 (2), 196−207. (21) Vercruysse, W.; Smeets, J.; Haeldermans, T.; Joos, B.; Hardy, A.; Samyn, P.; Yperman, J.; Vanreppelen, K.; Carleer, R.; Adriaensens, P.; Marchal, W.; Vandamme, D. Biochar from Raw and Spent Common Ivy: Impact of Preprocessing and Pyrolysis Temperature on Biochar Properties. J. Anal. Appl. Pyrolysis 2021, 159, No. 105294. (22) Manso, M.; Castro-Gomes, J. Green Wall Systems: A Review of Their Characteristics. Renew. Sustain. Energy Rev. 2015, 41, 863−871. (23) Ascione, F.; De Masi, R. F.; Mastellone, M.; Ruggiero, S.; Vanoli, G. P. Green Walls, a Critical Review: Knowledge Gaps, Design Parameters, Thermal Performances and Multi-Criteria Design Approaches. Energies 2020, 13 (9), 2296. (24) Darwin, C. On the Movements and Habits of Climbing Plants. J. Linn. Soc. London 1865, 9, 1−118. (25) Zhang, M.; Liu, M.; Prest, H.; Fischer, S. Nanoparticles Secreted from Ivy Rootlets for Surface Climbing. Nano Lett. 2008, 8 (5), 1277− 1280. (26) Zhang, M.; Liu, M.; Bewick, S.; Suo, Z. Nanoparticles to Increase Adhesive Properties of Biologically Secreted Materials for Surface Affixing. J. Biomed. Nanotechnol. 2009, 5 (3), 294−299. (27) Wu, Y.; Zhao, X.; Zhang, M. Adhesion Mechanics of Ivy Nanoparticles. J. Colloid Interface Sci. 2010, 344 (2), 533−540. (28) Lenaghan, S. C.; Burris, J. N.; Chourey, K.; Huang, Y.; Xia, L.; Lady, B.; Sharma, R.; Pan, C.; LeJeune, Z.; Foister, S.; Hettich, R. L.; Stewart, C. N.; Zhang, M. Isolation and Chemical Analysis of Nanoparticles from English Ivy (Hedera Helix L.). J. R. Soc. Interface 2013, 10 (87), 20130392. (29) Melzer, B.; Steinbrecher, T.; Seidel, R.; Kraft, O.; Schwaiger, R.; Speck, T. The Attachment Strategy of English Ivy: A Complex Mechanism Acting on Several Hierarchical Levels. J. R. Soc. Interface 2010, 7 (50), 1383−1389. (30) Lenaghan, S. C.; Zhang, M. Real-Time Observation of the Secretion of a Nanocomposite Adhesive from English Ivy (Hedera Helix). Plant Sci. 2012, 183, 206−211. (31) Huang, Y.; Wang, Y.; Tan, L.; Sun, L.; Petrosino, J.; Cui, M.-Z.; Hao, F.; Zhang, M. Nanospherical Arabinogalactan Proteins Are a Key Component of the High-Strength Adhesive Secreted by English Ivy. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (23), E3193−E3202. (32) Bartoli, F.; Romiti, F.; Caneva, G. Aggressiveness of Hedera Helix L. Growing on Monuments: Evaluation in Roman Archaeological Sites and Guidelines for a General Methodological Approach. Plant Biosyst. 2017, 151 (5), 866−877. (33) Cameron, R. W. F.; Taylor, J.; Emmett, M. A Hedera Green Façade − Energy Performance and Saving under Different MaritimeTemperate, Winter Weather Conditions. Build. Environ. 2015, 92, 111−121. (34) Cameron, R. W. F.; Taylor, J. E.; Emmett, M. R. What’s ‘Cool’ in the World of Green Façades? How Plant Choice Influences the Cooling Properties of Green Walls. Build. Environ. 2014, 73, 198−207. (35) Hoelscher, M.-T.; Nehls, T.; Jänicke, B.; Wessolek, G. Quantifying Cooling Effects of Facade Greening: Shading, Transpiration and Insulation. Energy Build. 2016, 114, 283−290. (36) Bolton, C.; Rahman, M. A.; Armson, D.; Ennos, A. R. Effectiveness of an Ivy Covering at Insulating a Building against the Cold in Manchester, U.K: A Preliminary Investigation. Build. Environ. 2014, 80, 32−35. (37) Pichlhöfer, A.; Korjenic, A.; Sulejmanovski, A.; Streit, E. Influence of Facade Greening with Ivy on Thermal Performance of Masonry Walls. Sustainability 2023, 15 (12), 9546. (38) U.S. EPA Office of Policy Analysis. The Benefits and Costs of the Clean Air Act from 1990 to 2020: Summary Report, 2011. http://www. epa.gov/oar/sect812/prospective2.html (accessed 2020-03-31). (39) Dedoussi, I. C.; Eastham, S. D.; Monier, E.; Barrett, S. R. H. Premature Mortality Related to United States Cross-State Air Pollution. Nature 2020, 578 (7794), 261−265. (40) Stafoggia, M.; Oftedal, B.; Chen, J.; Rodopoulou, S.; Renzi, M.; Atkinson, R. W.; Bauwelinck, M.; Klompmaker, J. O.; Mehta, A.; Vienneau, D.; Andersen, Z. J.; Bellander, T.; Brandt, J.; Cesaroni, G.; de Hoogh, K.; Fecht, D.; Gulliver, J.; Hertel, O.; Hoffmann, B.; Hvidtfeldt, U. A.; Jöckel, K. H.; Jørgensen, J. T.; Katsouyanni, K.; Ketzel, M.; Kristoffersen, D. T.; Lager, A.; Leander, K.; Liu, S.; Ljungman, P. L. S.; Nagel, G.; Pershagen, G.; Peters, A.; Raaschou-Nielsen, O.; Rizzuto, D.; Schramm, S.; Schwarze, P. E.; Severi, G.; Sigsgaard, T.; Strak, M.; van der Schouw, Y. T.; Verschuren, M.; Weinmayr, G.; Wolf, K.; Zitt, E.; Samoli, E.; Forastiere, F.; Brunekreef, B.; Hoek, G.; Janssen, N. A. H. Long-Term Exposure to Low Ambient Air Pollution Concentrations and Mortality among 28 Million People: Results from Seven Large European Cohorts within the ELAPSE Project. Lancet Planet. Heal. 2022, 6 (1), e9−e18. (41) Martins, M.; Hadba, L.; Mendonça, P.; Silva, L. T. Evaluating the Potential of Vegetation to Capture Pollutants in Urban Environment. Environ. Sci. Eng. 2022, 2, 3−13. (42) Dzierżanowski, K.; Popek, R.; Gawronska, ́ H.; Saebø, A.; Gawronski, ́ S. W. Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. Int. J. Phytoremediation 2011, 13 (10), 1037−1046. (43) Weerakkody, U.; Dover, J. W.; Mitchell, P.; Reiling, K. Particulate Matter Pollution Capture by Leaves of Seventeen Living Wall Species with Special Reference to Rail-Traffic at a Metropolitan Station. Urban For. Urban Green. 2017, 27, 173−186. (44) Ottelé, M.; Van Bohemen, H. D.; Fraaij, A. L. A. Quantifying the Deposition of Particulate Matter on Climber Vegetation on Living Walls. Ecol. Eng. 2010, 36, 154−162. (45) Zanoletti, A.; Bilo, F.; Borgese, L.; Depero, L. E.; Fahimi, A.; Ponti, J.; Valsesia, A.; La Spina, R.; Montini, T.; Bontempi, E. SUNSPACE, A Porous Material to Reduce Air Particulate Matter (PM). Front. Chem. 2018, 6, 534. (46) Yang, H.; Appleby, P. G. Use of Lead-210 as a Novel Tracer for Lead (Pb) Sources in Plants. Sci. Rep. 2016, 6 (1), 21707. (47) Abhijith, K. V.; Kukadia, V.; Kumar, P. Investigation of Air Pollution Mitigation Measures, Ventilation, and Indoor Air Quality at Three Schools in London. Atmos. Environ. 2022, 289, No. 119303. (48) Aydogan, A.; Montoya, L. D. Formaldehyde Removal by Common Indoor Plant Species and Various Growing Media. Atmos. Environ. 2011, 45 (16), 2675−2682. (49) Jin, C.; Zhou, X.; Zhao, H.; Liu, X.; Feng, K. Comparison of Removal of Formaldehyde Capacity Between Hedera Helix and Melissa Officinalis. Asian J. Chem. 2013, 25 (7), 3823−3826. (50) Yang, D. S.; Pennisi, S. V.; Son, K. C.; Kays, S. J. Screening Indoor Plants for Volatile Organic Pollutant Removal Efficienc. HortScience 2009, 44 (5), 1377−1381. (51) Dela Cruz, M.; Tomasi, G.; Müller, R.; Christensen, J. H. Removal of Volatile Gasoline Compounds by Indoor Potted Plants Studied by Pixel-Based Fingerprinting Analysis. Chemosphere 2019, 221, 226−234. (52) Dela Cruz, M.; Svenningsen, N. B.; Nybroe, O.; Müller, R.; Christensen, J. H. Removal of a Complex VOC Mixture by Potted Plants�Effects on Soil Microorganisms. Environ. Sci. Pollut. Res. 2023, 30 (19), 55372−55381. (53) Tartivel, R.; Tatin, R.; Delhaye, T.; Maupas, A.; Gendron, A.; Gautier, S.; Lavastre, O. Visualization and Localization of Bromotoluene Distribution in Hedera Helix Using NanoSIMS. Chemosphere 2012, 89 (7), 805−809. (54) Gubb, C.; Blanusa, T.; Griffiths, A.; Pfrang, C. Interaction between Plant Species and Substrate Type in the Removal of CO2 Indoors. Air Qual. Atmos. Heal. 2019, 12 (10), 1197−1206. (55) Demirci, B.; Goppel, M.; Demirci, F.; Franz, G. HPLC Profiling and Quantification of Active Principles in Leaves of Hedera Helix L. Pharmazie 2004, 59 (10), 770−774. (56) Stace, C. A. New Flora of the British Isles, Third Edition; Cambridge University Press: Cambridge, 2010; pp 1−1232. ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Perspective https://doi.org/10.1021/acssuschemeng.3c02875 ACS Sustainable Chem. Eng. XXXX, XXX, XXX−XXX Q (57) Xia, L.; Lenaghan, S. C.; Zhang, M.; Zhang, Z.; Li, Q. Naturally Occurring Nanoparticles from English Ivy: An Alternative to MetalBased Nanoparticles for UV Protection. J. Nanobiotechnology 2010, 8 (1), 12. (58) Strelau, M.; Clements, D. R.; Benner, J.; Prasad, R. The Biology of Canadian Weeds: 157. Hedera Helix L. and Hedera Hibernica (G. Kirchn.) Bean. Can. J. Plant Sci. 2018, 98 (5), 1005−1022. (59) Rehm, E. M.; Lenz, A.; Hoch, G.; Körner, C. Spring Patterns of Freezing Resistance and Photosynthesis of Two Leaf Phenotypes of Hedera Helix. Basic Appl. Ecol. 2014, 15 (6), 543−550. (60) Clarke, M. M.; Reichard, S. H.; Hamilton, C. W. Prevalence of Different Horticultural Taxa of Ivy (Hederaspp., Araliaceae) in Invading Populations. Biol. Invasions 2006, 8 (2), 149−157. (61) Biggerstaff, M. S.; Beck, C. W. Effects of Method of English Ivy Removal and Seed Addition on Regeneration of Vegetation in a Southeastern Piedmont Forest. Am. Midl. Nat. 2007, 158 (1), 206− 220. (62) Yang, Q.; Wehtje, G.; Gilliam, C. H.; McElroy, J. S.; Sibley, J. L. English Ivy (Hedera Helix) Control with Postemergence-Applied Herbicides. Invasive Plant Sci. Manag. 2013, 6 (3), 411−415. (63) Soares, M. A.; Li, H.-Y.; Bergen, M.; da Silva, J. M.; Kowalski, K. P.; White, J. F. Functional Role of an Endophytic Bacillus Amyloliquefaciens in Enhancing Growth and Disease Protection of Invasive English Ivy (Hedera Helix L.). Plant Soil 2016, 405 (1−2), 107−123. (64) Manzanedo, R. D.; Ballesteros-Cánovas, J.; Schenk, F.; Stoffel, M.; Fischer, M.; Allan, E. Increase in CO 2 Concentration Could Alter the Response of Hedera Helix to Climate Change. Ecol. Evol. 2018, 8 (16), 8598−8606. (65) Chance, C. M.; Coops, N. C.; Plowright, A. A.; Tooke, T. R.; Christen, A.; Aven, N. Invasive Shrub Mapping in an Urban Environment from Hyperspectral and LiDAR-Derived Attributes. Front. Plant Sci. 2016, 7, 1528. (66) Blondeel, H.; Remy, E.; Perring, M. P.; Landuyt, D.; Bodé, S.; De Frenne, P.; Boeckx, P.; Verheyen, K. Larger Direct than Indirect Effects of Multiple Environmental Changes on Leaf Nitrogen of Forest Herbs. Plant Soil 2019, 445 (1−2), 199−216. (67) Vercruysse, W.; Gomes, C. L.; Bleus, D.; Pappa, M.; Joos, B.; Hardy, A.; Marchal, W.; Vandamme, D. Demineralization of Common Ivy-Derived Biomass and Biochar and Its Effect on the Resulting Activated Carbon Properties. Sep. Purif. Technol. 2023, 319, 124023. (68) Van Soest, P. J.; Wine, R. H. Journal of Association of Official Analytical Chemists 1968, 51, 780. (69) Metcalfe, D. J. Hedera Helix L. J. Ecol. 2005, 93 (3), 632−648. (70) Bezruk, I.; Marksa, M.; Georgiyants, V.; Ivanauskas, L.; Raudone, L. Phytogeographical Profiling of Ivy Leaf (Hedera Helix L.). Ind. Crops Prod. 2020, 154, No. 112713. (71) Bezruk, I.; Materiienko, A.; Gubar, S.; Proskurina, K.; Budanova, L.; Ivanauskas, L.; Georgiyants, V. Estimation of the Influence of the Environmental Factors on the Accumulation of Phytochemicals and Antioxidant Capacity in the Ivy Leaves (Hedera Helix L.). Nat. Prod. Res. 2022, 36, 1014. (72) Royal Society of Chemistry: ChemSpider. CSID: 9666711, 660366, 23220982, 444962. www.chemspider.com (accessed 2023-01- 23). (73) Runkel, F.; Schneider, W.; Schmidt, O.; Engelhard, G. M. Process for Preparing an Extract from Ivy Leaves. US 7,943,184 B2, 2011. DOI: 10.1038/incomms1464. (74) Zaiter, A.; Becker, L.; Baudelaire, E.; Dicko, A. Optimum Polyphenol and Triterpene Contents of Hedera Helix (L.) and Scrophularia Nodosa (L.): The Role of Powder Particle Size. Microchem. J. 2018, 137, 168−173. (75) Gavrila, A. I.; Tatia, R.; Seciu-Grama, A.-M.; Tarcomnicu, I.; Negrea, C.; Calinescu, I.; Zalaru, C.; Moldovan, L.; Raiciu, A. D.; Popa, I. Ultrasound Assisted Extraction of Saponins from Hedera Helix L. and an In Vitro Biocompatibility Evaluation of the Extracts. Pharmaceuticals 2022, 15 (10), 1197. (76) Khdair, A.; Mohammad, M. K.; Tawaha, K.; Al-Hamarsheh, E.; AlKhatib, H. S.; Al-khalidi, B.; Bustanji, Y.; Najjar, S.; Hudaib, M. A Validated RP HPLC-PAD Method for the Determination of Hederacoside C in Ivy-Thyme Cough Syrup. Int. J. Anal. Chem. 2010, 2010, 1−5. (77) Yu, M.; Shin, Y. J.; Kim, N.; Yoo, G.; Park, S. J.; Kim, S. H. Determination of Saponins and Flavonoids in Ivy Leaf Extracts Using HPLC-DAD. J. Chromatogr. Sci. 2015, 53 (4), 478−483. (78) Yasmeen, S.; Yasmeen, S.; Khattak, S. U. R.; Navead, S.; Almas, Y.; Saquib, N. U.; Sadia, H.; Qamar, F.; Sana, A.; Aman, T.; Khan, M. U. Quantification of Triterpene Saponins of Hedera Helix Spray-Dried Extract by HPLC. J. Hunan Univ. Nat. Sci. 2022, 49 (9), 17−23. (79) Havlíková, L.; Macáková, K.; Opletal, L.; Solich, P. Rapid Determination of α-Hederin and Hederacoside C in Extracts of Hedera Helix Leaves Available in the Czech Republic and Poland. Nat. Prod. Commun. 2015, 15 (9), 1529−1531. (80) Kim, N.; Shin, Y. J.; Park, S.; Yoo, G.; Kim, Y.; Yoo, H. H.; Kim, S. H. Simultaneous Determination of Six Compounds in Hedera Helix L. Using UPLC-ESI−MS/MS. Chromatographia 2017, 80 (7), 1025− 1033. (81) Pham, H. N.; Tran, C. A.; Trinh, T. D.; Nguyen Thi, N. L.; Tran Phan, H. N.; Le, V. N.; Le, N. H.; Phung, V. T. UHPLC-Q-TOF-MS/ MS Dereplication to Identify Chemical Constituents of Hedera Helix Leaves in Vietnam. J. Anal. Methods Chem. 2022, 2022, 1−18. (82) Mischko, W.; Hirte, M.; Fuchs, M.; Mehlmer, N.; Brück, T. B. Identification of Sesquiterpene Synthases from the Basidiomycota Coniophora Puteana for the Efficient and Highly Selective β-Copaene and Cubebol Production in E. Coli. Microb. Cell Fact. 2018, 17 (1), 164. (83) European Medicines Agency - Committee on Herbal Medicinal Products (HMPC). Assessment Report on Hedera Helix L., Folium, 2017, 1−101. (84) Fazio, S.; Pouso, J.; Dolinsky, D.; Fernandez, A.; Hernandez, M.; Clavier, G.; Hecker, M. Tolerance, Safety and Efficacy of Hedera Helix 1 Extract in Inflammatory Bronchial Diseases under Clinical Practice Conditions: A Prospective, Open, Multicentre Postmarketing Study in 9657 Patients. Phytomedicine 2009, 16, 17−24. (85) Cwientzek, U.; Ottillinger, B.; Arenberger, P. Acute Bronchitis Therapy with Ivy Leaves Extracts in a Two-Arm Study. A Double-Blind, Randomised Study vs. an Other Ivy Leaves Extract. Phytomedicine 2011, 18 (13), 1105−1109. (86) Sierocinski, E.; Holzinger, F.; Chenot, J.-F. Ivy Leaf (Hedera Helix) for Acute Upper Respiratory Tract Infections: An Updated Systematic Review. Eur. J. Clin. Pharmacol. 2021, 77 (8), 1113−1122. (87) Akhtar, M.; Shaukat, A.; Zahoor, A.; Chen, Y.; Wang, Y.; Yang, M.; Umar, T.; Guo, M.; Deng, G. Anti-Inflammatory Effects of Hederacoside-C on Staphylococcus Aureus Induced Inflammation via TLRs and Their Downstream Signal Pathway in Vivo and in Vitro. Microb. Pathog. 2019, 137, No. 103767. (88) Lacatusu, I.; Badea, N.; Badea, G.; Brasoveanu, L.; Stan, R.; Ott, C.; Oprea, O.; Meghea, A. Ivy Leaves Extract Based − Lipid Nanocarriers and Their Bioefficacy on Antioxidant and Antitumor Activities. RSC Adv. 2016, 6 (81), 77243−77255. (89) Wang, J.; Deng, H.; Zhang, J.; Wu, D.; Li, J.; Ma, J.; Dong, W. AHederin Induces the Apoptosis of Gastric Cancer Cells Accompanied by Glutathione Decrement and Reactive Oxygen Species Generation via Activating Mitochondrial Dependent Pathway. Phyther. Res. 2020, 34 (3), 601−611. (90) Rooney, S.; Ryan, M. F. Modes of Action of Alpha-Hederin and Thymoquinone, Active Constituents of Nigella Sativa, against HEp-2 Cancer Cells. Anticancer Res. 2005, 25, 4255−4259. (91) Zhan, Y.; Wang, K.; Li, Q.; Zou, Y.; Chen, B.; Gong, Q.; Ho, H. I.; Yin, T.; Zhang, F.; Lu, Y.; Wu, W.; Zhang, Y.; Tan, Y.; Du, B.; Liu, X.; Xiao, J. The Novel Autophagy Inhibitor Alpha-Hederin Promoted Paclitaxel Cytotoxicity by Increasing Reactive Oxygen Species Accumulation in Non-Small Cell Lung Cancer Cells. Int. J. Mol. Sci. 2018, 19 (10), 3221. (92) Zhu, R.; Zhang, C.; Liu, Y.; Yuan, Z.-Q.; Chen, W.-L.; Yang, S.- D.; Li, J.-Z.; Zhu, W.-J.; Zhou, X.-F.; You, B.-G.; Zhang, X.-N. CD147 Monoclonal Antibody Mediated by Chitosan Nanoparticles Loaded with α-Hederin Enhances Antineoplastic Activity and Cellular Uptake in Liver Cancer Cells. Sci. Rep. 2016, 5 (1), 17904. ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Perspective https://doi.org/10.1021/acssuschemeng.3c02875 ACS Sustainable Chem. Eng. XXXX, XXX, XXX−XXX R (93) Tatia, R.; Zalaru, C.; Craciunescu, O.; Moldovan, L.; Oancea, A.; Calinescu, I. Optimization of Triterpene Saponins Mixture with Antiproliferative Activity. Appl. Sci. 2019, 9 (23), 5160. (94) Tatia, R.; Tarcomnicu, I.; Moldovan, Z.; Raiciu, A. D.; Moldovan, L.; Zalaru, C. M. In Vitro Antiproliferative Activity of Triterpenoid Saponins from Leaves of Hedera Helix L. Grown in Romania. South African J. Bot. 2023, 158, 1−7. (95) Silveira, D.; Prieto-Garcia, J. M.; Boylan, F.; Estrada, O.; FonsecaBazzo, Y. M.; Jamal, C. M.; Magalhaes, ̃ P. O.; Pereira, E. O.; Tomczyk, M.; Heinrich, M. COVID-19: Is There Evidence for the Use of Herbal Medicines as Adjuvant Symptomatic Therapy? Front. Pharmacol. 2020, 11, 1−44. (96) Salim, B.; Noureddine, M. Identification of Compounds from Nigella Sativa as New Potential Inhibitors of 2019 Novel Coronasvirus (Covid-19): Molecular Docking Study. ChemRxiv 2020, 19, 1−12. (97) Wu, A.-G.; Zeng, W.; Wong, V. K.-W.; Zhu, Y.-Z.; Lo, A. C.Y.; Liu, L.; Law, B. Y.-K. Hederagenin And-Hederin Promote Degradation of Proteins in Neurodegenerative Diseases and Improve Motor Deficits in MPTP-Mice. Pharmacol. Res. 2017, 115, 25−44. (98) Moshaei-Nezhad, P.; Hosseini, S. M.; Yahyapour, M.; Iman, M.; Khamesipour, A. Protective Effect of Ivy Leaf Extract on ParacetamolInduced Oxidative Stress and Nephrotoxicity in Mice. J. HerbMed. Pharmacol. 2019, 8 (1), 64−68. (99) Shokry, A. A.; El-Shiekh, R. A.; Kamel, G.; Bakr, A. F.; Sabry, D.; Ramadan, A. Anti-Arthritic Activity of the Flavonoids Fraction of Ivy Leaves (Hedera Helix L.) Standardized Extract in Adjuvant Induced Arthritis Model in Rats in Relation to Its Metabolite Profile Using LC/ MS. Biomed. Pharmacother. 2022, 145, No. 112456. (100) Alothman, R. A. T.; Abdin, A. R.; Mahmoud, A. H. The Effect of Using Vegetated Façades on CO 2 Emissions in Multistory Residential Buildings, in Cold Semiarid and Hot Arid Climate. IOP Conf. Ser. Earth Environ. Sci. 2022, 1113 (1), No. 012020. (101) Röhner, E.; Carabet, A.; Buchenauer, H. Effectiveness of Plant Extracts of Paeonia Suffruticosa and Hedera Helix against Diseases Caused by Phytophthora Infestans in Tomato and Pseudoperonospora Cubensis in Cucumber. Pflanzenschutz/J. Plant Dis. Prot. 2004, 111 (1), 83−95. (102) Baysal, Ö .; Zeller, W. Extract of Hedera Helix Induces Resistance on Apple Rootstock M26 Similar to Acibenzolar-S-Methyl against Fire Blight (Erwinia Amylovora). Physiol. Mol. Plant Pathol. 2004, 65 (6), 305−315. (103) Andrade Pinto, J. M.; Souza, E. A.; Oliveira, D. F. Use of Plant Extracts in the Control of Common Bean Anthracnose. Crop Prot. 2010, 29 (8), 838−842. (104) Yanar, Y.; Gouml kccedil e, A.; Kadioglu, I.; Ccedil am, H.; Whalon, M. In Vitro Antifungal Evaluation of Various Plant Extracts against Early Blight Disease (Alternaria Solani) of Potato. African J. Biotechnol. 2011, 10 (42), 8291−8295. (105) Koch, E.; Enders, M.; Ullrich, C.; Molitor, D.; BerkelmannLöhnertz, B. Effect of Primula Root and Other Plant Extracts on Infection Structure Formation of Phyllosticta Ampelicida (Asexual Stage of Guignardia Bidwellii) and on Black Rot Disease of Grapevine in the Greenhouse. J. Plant Dis. Prot. 2013, 120 (1), 26−33. (106) Parvu, ̂ M.; Vlase, L.; Parvu, ̂ A. E.; Rosca-Casian, O.; Gheldiu, A. M.; Parvu, ̂ O. Phenolic Compounds and Antifungal Activity of Hedera Helix L. (Ivy) Flowers and Fruits. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43 (1), 53−58. (107) Huang, Y.; Lenaghan, S. C.; Xia, L.; Burris, J. N.; Stewart, C. N.; Zhang, M. Characterization of Physicochemical Properties of Ivy Nanoparticles for Cosmetic Application. J. Nanobiotechnology 2013, 11 (1), 3. (108) Burris, J. N.; Lenaghan, S. C.; Zhang, M.; Stewart, C. N. Nanoparticle Biofabrication Using English Ivy (Hedera Helix). J. Nanobiotechnology 2012, 10 (1), 1−7. (109) Huang, Y.; Wang, Y.-J.; Wang, Y.; Yi, S.; Fan, Z.; Sun, L.; Lin, D.; Anreddy, N.; Zhu, H.; Schmidt, M.; Chen, Z.-S.; Zhang, M. Exploring Naturally Occurring Ivy Nanoparticles as an Alternative Biomaterial. Acta Biomater. 2015, 25, 268−283. (110) Abbasifar, A.; Ghani, S.; Ahsani Irvani, M.; Rafiee, B.; Valizade Kaji, B.; Akbari, A. Antibacterial Activity of Silver Nanoparticles Synthesized by Using Extracts of Hedera Helix. Zahedan J Res Med Sci. 2017, 19 (1), e5920. (111) Zdarta, A.; Smułek, W.; Pacholak, A.; Kaczorek, E. Environmental Aspects of the Use of Hedera Helix Extract in Bioremediation Process. Microorganisms 2019, 7 (2), 43. (112) Eguale, T.; Tilahun, G.; Debella, A.; Feleke, A.; Makonnen, E. Haemonchus Contortus: In Vitro and in Vivo Anthelmintic Activity of Aqueous and Hydro-Alcoholic Extracts of Hedera Helix. Exp. Parasitol. 2007, 116, 340−345. (113) Dhali, K.; Ghasemlou, M.; Daver, F.; Cass, P.; Adhikari, B. A Review of Nanocellulose as a New Material towards Environmental Sustainability. Sci. Total Environ. 2021, 775, No. 145871. (114) Marakana, P. G.; Dey, A.; Saini, B. Isolation of Nanocellulose from Lignocellulosic Biomass: Synthesis, Characterization, Modification, and Potential Applications. J. Environ. Chem. Eng. 2021, 9 (6), No. 106606. (115) Wang, C.; Yang, S.; Song, X.; Pi, Q.; Zhang, Q.; Liu, Q.; Xu, Y.; Chen, L.; Ma, L. Novel Solvent Systems for Biomass Fractionation Based on Hydrogen-Bond Interaction: A Minireview. Adv. Sustain. Syst. 2020, 4 (10), No. 2000085. (116) Liang, X.; Zhang, J.; Huang, Z.; Guo, Y. Sustainable Recovery and Recycling of Natural Deep Eutectic Solvent for Biomass Fractionation via Industrial Membrane-Based Technique. Ind. Crops Prod. 2023, 194, No. 116351. (117) Ajao, O.; Marinova, M.; Savadogo, O.; Paris, J. Hemicellulose Based Integrated Forest Biorefineries: Implementation Strategies. Ind. Crops Prod. 2018, 126 (July), 250−260. (118) Sethupathy, S.; Murillo Morales, G.; Gao, L.; Wang, H.; Yang, B.; Jiang, J.; Sun, J.; Zhu, D. Lignin Valorization: Status, Challenges and Opportunities. Bioresour. Technol. 2022, 347, No. 126696. (119) Liu, W. J.; Jiang, H.; Yu, H. Q. Thermochemical Conversion of Lignin to Functional Materials: A Review and Future Directions. Green Chem. 2015, 17 (11), 4888−4907. (120) Lehmann, J. A Handful of Carbon. Nature 2007, 447 (7141), 143−144. (121) Lahijani, P.; Mohammadi, M.; Mohamed, A. R.; Ismail, F.; Lee, K. T.; Amini, G. Upgrading Biomass-Derived Pyrolysis Bio-Oil to BioJet Fuel through Catalytic Cracking and Hydrodeoxygenation: A Review of Recent Progress. Energy Convers. Manag. 2022, 268 (May), No. 115956. (122) Marmiroli, M.; Bonas, U.; Imperiale, D.; Lencioni, G.; Mussi, F.; Marmiroli, N.; Maestri, E. Structural and Functional Features of Chars From Different Biomasses as Potential Plant Amendments. Front. Plant Sci. 2018, 9, 1−13. (123) Nan, H.; Yang, F.; Zhao, L.; Masek, ̌ O.; Cao, X.; Xiao, Z. Interaction of Inherent Minerals with Carbon during Biomass Pyrolysis Weakens Biochar Carbon Sequestration Potential. ACS Sustain. Chem. Eng. 2019, 7 (1), 1591−1599. (124) Gao, X.; Yani, S.; Wu, H. Pyrolysis of Spent Biomass from Mallee Leaf Steam Distillation: Biochar Properties and Recycling of Inherent Inorganic Nutrients. Energy Fuels 2014, 28 (7), 4642−4649. (125) Chen, W.; Chen, Y.; Yang, H.; Xia, M.; Li, K.; Chen, X.; Chen, H. Co-Pyrolysis of Lignocellulosic Biomass and Microalgae: Products Characteristics and Interaction Effect. Bioresour. Technol. 2017, 245, 860−868. (126) Haeldermans, T.; Campion, L.; Kuppens, T.; Vanreppelen, K.; Cuypers, A.; Schreurs, S. A Comparative Techno-Economic Assessment of Biochar Production from Different Residue Streams Using Conventional and Microwave Pyrolysis. Bioresour. Technol. 2020, 318, No. 124083. (127) Alhashimi, H. A.; Aktas, C. B. Life Cycle Environmental and Economic Performance of Biochar Compared with Activated Carbon: A Meta-Analysis. Resour. Conserv. Recycl. 2017, 118, 13−26. (128) Abioye, A. M.; Ani, F. N. Recent Development in the Production of Activated Carbon Electrodes from Agricultural Waste Biomass for Supercapacitors: A Review. Renew. Sustain. Energy Rev. 2015, 52, 1282−1293. ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Perspective https://doi.org/10.1021/acssuschemeng.3c02875 ACS Sustainable Chem. Eng. XXXX, XXX, XXX−XXX S (129) Bhadra, B. N.; Seo, P. W.; Jhung, S. H. Adsorption of Diclofenac Sodium from Water Using Oxidized Activated Carbon. Chem. Eng. J. 2016, 301, 27−34. (130) Hernández Rodiguez, M.; Yperman, J.; Carleer, R.; Maggen, J.; Dadi, D.; Gryglewicz, G.; Van der Bruggen, B.; Falcón Hernández, J.; Otero Calvis, A. Adsorption of Ni(II) on Spent Coffee and Coffee Husk Based Activated Carbon. J. Environ. Chem. Eng. 2018, 6 (1), 1161− 1170. (131) Vanderheyden, S. R. H.; Vanreppelen, K.; Yperman, J.; Carleer, R.; Schreurs, S. Chromium(VI) Removal Using in-Situ Nitrogenized Activated Carbon Prepared from Brewers’ Spent Grain. Adsorption 2018, 24 (2), 147−156. (132) Lam, S. S.; Liew, R. K.; Wong, Y. M.; Yek, P. N. Y.; Ma, N. L.; Lee, C. L.; Chase, H. A. Microwave-Assisted Pyrolysis with Chemical Activation, an Innovative Method to Convert Orange Peel into Activated Carbon with Improved Properties as Dye Adsorbent. J. Clean. Prod. 2017, 162, 1376−1387. (133) Choma, J.; Marszewski, M.; Osuchowski, L.; Jagiello, J.; Dziura, A.; Jaroniec, M. Adsorption Properties of Activated Carbons Prepared from Waste CDs and DVDs. ACS Sustain. Chem. Eng. 2015, 3 (4), 733− 742. (134) Mensah-Darkwa, K.; Zequine, C.; Kahol, P. K.; Gupta, R. K. Supercapacitor Energy Storage Device Using Biowastes: A Sustainable Approach to Green Energy. Sustain. 2019, 11 (2), 414. (135) Cameron, R. W. F.; Taylor, J.; Emmett, M. A Hedera Green Façade − Energy Performance and Saving under Different MaritimeTemperate, Winter Weather Conditions. Build. Environ. 2015, 92, 111−121. (136) Croxatto Vega, G.; Sohn, J.; Voogt, J.; Birkved, M.; Olsen, S. I.; Nilsson, A. E. Insights from Combining Techno-Economic and Life Cycle Assessment − a Case Study of Polyphenol Extraction from Red Wine Pomace. Resour. Conserv. Recycl. 2021, 167, No. 105318. (137) Attia, S.; Canonge, T.; Popineau, M.; Cuchet, M. Developing a Benchmark Model for Renovated, Nearly Zero-Energy, Terraced Dwellings. Appl. Energy 2022, 306, 118128. (138) United States Environmental Protection Agency. Greenhouse Gas Equivalencies Calculator. https://www.epa.gov/energy/ greenhouse-gas-equivalencies-calculator (accessed 2022-11-30). (139) Costamagna, E.; Caruso, A.; Galvao, ̃ A.; Rizzo, A.; Masi, F.; Fiore, S.; Boano, F. Impact of Biochar and Graphene as Additives on the Treatment Performances of a Green Wall Fed with Greywater. Water 2023, 15 (1), 195. (140) Greenhouse gas emission intensity of electricity generation in Europe. https://www.eea.europa.eu/ims/greenhouse-gas-emissionintensity-of-1 (accessed 2022-11-22). (141) Huang, Y. F.; Lo, S. L. Predicting Heating Value of Lignocellulosic Biomass Based on Elemental Analysis. Energy 2020, 191, 116501. (142) Cross, A.; Sohi, S. P. A Method for Screening the Relative LongTerm Stability of Biochar. GCB Bioenergy 2013, 5 (2), 215−220.-
local.type.refereedRefereed-
local.type.specifiedReview-
dc.identifier.doi10.1021/acssuschemeng.3c02875-
dc.identifier.isi001072980400001-
local.provider.typePdf-
local.uhasselt.internationalno-
item.fulltextWith Fulltext-
item.fullcitationVERCRUYSSE, Willem; NOPPEN, Bernard; JOZEFCZAK, Marijke; HUYBRECHTS, Michiel; DERVEAUX, Elien; Vandecasteele, Bart; CUYPERS, Ann; MARCHAL, Wouter & VANDAMME, Dries (2023) Common Ivy (Hedera Helix L.) as a Novel Green Resource in an Urban Biorefinery Concept. In: ACS Sustainable Chemistry & Engineering, 11 (39) , p. 14267 -14286.-
item.accessRightsEmbargoed Access-
item.contributorVERCRUYSSE, Willem-
item.contributorNOPPEN, Bernard-
item.contributorJOZEFCZAK, Marijke-
item.contributorHUYBRECHTS, Michiel-
item.contributorDERVEAUX, Elien-
item.contributorVandecasteele, Bart-
item.contributorCUYPERS, Ann-
item.contributorMARCHAL, Wouter-
item.contributorVANDAMME, Dries-
item.embargoEndDate2024-09-20-
crisitem.journal.issn2168-0485-
crisitem.journal.eissn2168-0485-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
vercruysse-et-al-2023-common-ivy-(hedera-helix-l-)-as-a-novel.pdf
  Restricted Access
Published version10.12 MBAdobe PDFView/Open    Request a copy
ACFrOgDs8_UTSb8kNuFZ5uJ3du-DcxmZd5QLS1wVWrZ0xvrP9RJIewClQksE6n_WfarTYdxj0.pdf
  Until 2024-09-20
Peer-reviewed author version1.22 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.