Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/41812
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPAREDIS, Simon-
dc.contributor.authorCARDEYNAELS, Tom-
dc.contributor.authorBREBELS, Sonny-
dc.contributor.authorDECKERS, Jasper-
dc.contributor.authorKuila, S.-
dc.contributor.authorLATHOUWERS, Adrian-
dc.contributor.authorVan Landeghem, M.-
dc.contributor.authorVANDEWAL, Koen-
dc.contributor.authorDanos, A.-
dc.contributor.authorMonkman, A. P.-
dc.contributor.authorChampagne, B.-
dc.contributor.authorMAES, Wouter-
dc.date.accessioned2023-11-16T08:19:58Z-
dc.date.available2023-11-16T08:19:58Z-
dc.date.issued2023-
dc.date.submitted2023-11-16T08:01:23Z-
dc.identifier.citationPHYSICAL CHEMISTRY CHEMICAL PHYSICS, 25 (43) , p. 29842 -29849-
dc.identifier.urihttp://hdl.handle.net/1942/41812-
dc.description.abstractThree novel TADF (thermally activated delayed fluorescence) emitters based on the well-studied Qx-Ph-DMAC fluorophore are designed and synthesized. The photophysical properties of these materials are studied from a theoretical and experimental point of view, demonstrating the cumulative effects of multiple small modifications that combine to afford significantly improved TADF performance. First, an extra phenyl ring is added to the acceptor part of Qx-Ph-DMAC to increase the conjugation length, resulting in BQx-Ph-DMAC, which acts as an intermediate molecular structure. Next, an electron-deficient coumarin unit is incorporated to fortify the electron accepting ability, affording ChromPy-Ph-DMAC with red-shifted emission. Finally, the conjugated system is further enlarged by 'locking' the molecular structure, generating DBChromQx-DMAC with further red-shifted emission. The addition of the coumarin unit significantly impacts the charge-transfer excited state energy levels with little effect on the locally excited states, resulting in a decrease of the singlet-triplet energy gap. As a result, the two coumarin-based emitters show considerably improved TADF performance in 1 w/w% zeonex films when compared to the initial Qx-Ph-DMAC structure. 'Locking' the molecular structure further lowers the singlet-triplet energy gap, resulting in more efficient reverse intersystem crossing and increasing the contribution of TADF to the total emission. Starting from the known emitter Qx-Ph-DMAC, stepwise modification by coumarin integration and locking of the acceptor affords closer alignment of excited states, leading to improvements in TADF performance and emission efficiency in DBChromQx-DMAC.-
dc.description.sponsorshipThe authors thank the Research Foundation – Flanders (FWO Vlaanderen) for financial support through projects G087718N, G0D1521N, I006320N, GOH3816NAUHL, the Scientific Research Community ‘Supramolecular Chemistry and Materials’ (W000620N), postdoctoral fellowships 1284623N (T. Cardeynaels) and 1270123N (M. Van Landeghem), and PhD scholarship of S. Paredis. The calculations were performed on the computers of the ‘Consortium des e´quipements de Calcul Intensif (CE´CI)’ (https:// www.ceci-hpc.be), including those of the ‘UNamur Technological Platform of High-Performance Computing (PTCI)’ (https://www. ptci.unamur.be), for which we gratefully acknowledge financial support from the FNRS-FRFC, the Walloon Region, and the University of Namur (Conventions No. GEQ U.G006.15, U.G018.19, U.G011.22, RW/GEQ2016, RW1610468, and RW2110213). S. Kuila and A. P. Monkman are supported by EPSRC grant EP/T02240X/1.-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.rightsOpen Access Article. Published on 18 October 2023. Downloaded on 11/16/2023 8:02:29 AM. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.-
dc.titleIntramolecular locking and coumarin insertion: a stepwise approach for TADF design-
dc.typeJournal Contribution-
dc.identifier.epage29849-
dc.identifier.issue43-
dc.identifier.spage29842-
dc.identifier.volume25-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notesMaes, W (corresponding author), Hasselt Univ, Inst Mat Res IMO IMOMEC, Design & Synth Organ Semicond DSOS, Agoralaan 1, B-3590 Diepenbeek, Belgium.; Maes, W (corresponding author), IMEC, IMOMEC Div, Wetenschapspk 1, B-3590 Diepenbeek, Belgium.; Maes, W (corresponding author), Energyville, B-3600 Genk, Belgium.; Danos, A (corresponding author), Univ Durham, Dept Phys, OEM Grp, South Rd, Durham DH1 3LE, England.-
local.publisher.placeTHOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1039/d3cp03695b-
dc.identifier.pmid37888766-
dc.identifier.isi001088381400001-
dc.contributor.orcidLathouwers, Adrian/0000-0001-5013-5884; Brebels,-
dc.contributor.orcidSonny/0000-0003-2611-5191; Vandewal, Koen/0000-0001-5471-383X;-
dc.contributor.orcidCardeynaels, Tom/0000-0003-4861-6739; Deckers,-
dc.contributor.orcidJasper/0000-0002-8748-6044; Monkman, Andrew/0000-0002-0784-8640; Van-
dc.contributor.orcidLandeghem, Melissa/0000-0001-8927-5358-
local.provider.typewosris-
local.description.affiliation[Paredis, S.; Cardeynaels, T.; Brebels, S.; Deckers, J.; Lathouwers, A.; Maes, W.] Hasselt Univ, Inst Mat Res IMO IMOMEC, Design & Synth Organ Semicond DSOS, Agoralaan 1, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Paredis, S.; Cardeynaels, T.; Brebels, S.; Deckers, J.; Lathouwers, A.; Van Landeghem, M.; Vandewal, K.; Maes, W.] IMEC, IMOMEC Div, Wetenschapspk 1, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Paredis, S.; Cardeynaels, T.; Brebels, S.; Deckers, J.; Lathouwers, A.; Van Landeghem, M.; Vandewal, K.; Maes, W.] Energyville, B-3600 Genk, Belgium.-
local.description.affiliation[Cardeynaels, T.; Champagne, B.] Univ Namur, Namur Inst Struct Matter, Theoret & Struct Phys Chem Unit, Lab Theoret Chem, Rue Bruxelles 61, B-5000 Namur, Belgium.-
local.description.affiliation[Kuila, S.; Danos, A.; Monkman, A. P.] Univ Durham, Dept Phys, OEM Grp, South Rd, Durham DH1 3LE, England.-
local.description.affiliation[Van Landeghem, M.; Vandewal, K.] Hasselt Univ, Inst Mat Res IMO IMOMEC, Organ Optoelect OOE, Wetenschapspk 1, B-3590 Diepenbeek, Belgium.-
local.uhasselt.internationalno-
item.fullcitationPAREDIS, Simon; CARDEYNAELS, Tom; BREBELS, Sonny; DECKERS, Jasper; Kuila, S.; LATHOUWERS, Adrian; Van Landeghem, M.; VANDEWAL, Koen; Danos, A.; Monkman, A. P.; Champagne, B. & MAES, Wouter (2023) Intramolecular locking and coumarin insertion: a stepwise approach for TADF design. In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 25 (43) , p. 29842 -29849.-
item.contributorPAREDIS, Simon-
item.contributorCARDEYNAELS, Tom-
item.contributorBREBELS, Sonny-
item.contributorDECKERS, Jasper-
item.contributorKuila, S.-
item.contributorLATHOUWERS, Adrian-
item.contributorVan Landeghem, M.-
item.contributorVANDEWAL, Koen-
item.contributorDanos, A.-
item.contributorMonkman, A. P.-
item.contributorChampagne, B.-
item.contributorMAES, Wouter-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
crisitem.journal.issn1463-9076-
crisitem.journal.eissn1463-9084-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Intramolecular locking and coumarin insertion_ a stepwise approach for TADF design.pdfPublished version2.4 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.