Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/41864
Title: How to verify the precision of density-functional-theory implementations via reproducible and universal workflows
Authors: Bosoni, Emanuele
Beal, Louis
Bercx, Marnik
Blaha, Peter
Blügel, Stefan
Bröder, Jens
Callsen, Martin
Cottenier, Stefaan
Degomme, Augustin
Dikan, Vladimir
Eimre, Kristjan
Flage-Larsen, Espen
Fornari, Marco
Garcia, Alberto
Genovese, Luigi
Giantomassi, Matteo
Huber, Sebastiaan P.
Janssen, Henning
Kastlunger, Georg
Krack, Matthias
Kresse, Georg
Kühne, Thomas D.
Lejaeghere, Kurt
Madsen, Georg K. H.
Marsman, Martijn
Marzari, Nicola
Michalicek, Gregor
Mirhosseini, Hossein
Müller, Tiziano M. A.
Petretto, Guido
Pickard, Chris J.
Poncé, Samuel
Rignanese, Gian-Marco
Rubel, Oleg
Ruh, Thomas
Sluydts, Michael
VANPOUCKE, Danny E.P. 
Vijay, Sudarshan
Wolloch, Michael
Wortmann, Daniel
Yakutovich, Aliaksandr V.
Yu, Jusong
Zadoks, Austin
Zhu, Bonan
Pizzi, Giovanni
Issue Date: 2023
Publisher: NATURE PORTFOLIO
Source: Nature Reviews Physics,
Status: Early view
Abstract: Density-functional theory methods and codes adopting periodic boundary conditions are extensively used in condensed matter physics and materials science research. In 2016, their precision (how well properties computed with different codes agree among each other) was systematically assessed on elemental crystals: a first crucial step to evaluate the reliability of such computations. In this Expert Recommendation, we discuss recommendations for verification studies aiming at further testing precision and transferability of density-functional-theory computational approaches and codes. We illustrate such recommendations using a greatly expanded protocol covering the whole periodic table from Z = 1 to 96 and characterizing 10 prototypical cubic compounds for each element: four unaries and six oxides, spanning a wide range of coordination numbers and oxidation states. The primary outcome is a reference dataset of 960 equations of state cross-checked between two all-electron codes, then used to verify and improve nine pseudopotential-based approaches. Finally, we discuss the extent to which the current results for total energies can be reused for different goals.
Notes: Pizzi, G (corresponding author), Ecole Polytech Fed Lausanne EPFL, Theory & Simulat Mat THEOS, Lausanne, Switzerland.; Pizzi, G (corresponding author), Ecole Polytech Fed Lausanne EPFL, Natl Ctr Computat Design & Discovery Novel Mat MAR, Lausanne, Switzerland.; Pizzi, G (corresponding author), Paul Scherrer Inst PSI, Lab Mat Simulat LMS, Villigen, Switzerland.
giovanni.pizzi@psi.ch
Document URI: http://hdl.handle.net/1942/41864
e-ISSN: 2522-5820
DOI: 10.1038/s42254-023-00655-3
ISI #: 001103174800001
Rights: Springer Nature Limited 2023
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
s42254-023-00655-3.pdf
  Restricted Access
Early view7.82 MBAdobe PDFView/Open    Request a copy
acwf-verification-2023-for-self-archival.pdf
  Until 2024-05-14
Peer-reviewed author version9.89 MBAdobe PDFView/Open    Request a copy
Show full item record

WEB OF SCIENCETM
Citations

1
checked on Apr 23, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.