Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/42029
Title: A compositional data model to predict the isotope distribution for average peptides using a compositional spline model
Authors: AGTEN, Annelies 
VILENNE, Frédérique 
PROSTKO, Piotr 
VALKENBORG, Dirk 
Issue Date: 2023
Publisher: WILEY
Source: PROTEOMICS,
Status: Early view
Abstract: We propose an updated approach for approximating the isotope distribution of average peptides given their monoisotopic mass. Our methodology involves in-silico cleavage of the entire UNIPROT database of human-reviewed proteins using Trypsin, generating a theoretical peptide dataset. The isotope distribution is computed using BRAIN. We apply a compositional data modelling strategy that utilizes an additive log-ratio transformation for the isotope probabilities followed by a penalized spline regression. Furthermore, due to the impact of the number of sulphur atoms on the course of the isotope distribution, we develop separate models for peptides containing zero up to five sulphur atoms. Additionally, we propose three methods to estimate the number of sulphur atoms based on an observed isotope distribution. The performance of the spline models and the sulphur prediction approaches is evaluated using a mean squared error and a modified Pearson's chi 2 goodness-of-fit measure on an experimental UPS2 data set. Our analysis reveals that the variability in spectral accuracy, that is, the variability between MS1 scans, contributes more to the errors than the approximation of the theoretical isotope distribution by our proposed average peptide model. Moreover, we find that the accuracy of predicting the number of sulphur atoms based on the observed isotope distribution is limited by measurement accuracy.
Notes: Annelies, A (corresponding author), Univ Hasselt, Campus Diepenbeek,Agoralaan Gebouw, B-3590 Diepenbeek, Belgium.
annelies.agten@uhasselt.be
Keywords: average peptide;compositional data;isotope distribution;spline regression;sulphur prediction
Document URI: http://hdl.handle.net/1942/42029
ISSN: 1615-9853
e-ISSN: 1615-9861
DOI: 10.1002/pmic.202300154
ISI #: 001113468800001
Rights: 2023 Wiley-VCH GmbH.
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Show full item record

WEB OF SCIENCETM
Citations

1
checked on May 2, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.