Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/42140
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBECKER, Thijs-
dc.contributor.authorROUSSEAU, Axel-Jan-
dc.contributor.authorGEUBBELMANS, Melvin-
dc.contributor.authorBURZYKOWSKI, Tomasz-
dc.contributor.authorVALKENBORG, Dirk-
dc.date.accessioned2024-01-16T14:36:01Z-
dc.date.available2024-01-16T14:36:01Z-
dc.date.issued2023-
dc.date.submitted2024-01-09T19:07:59Z-
dc.identifier.citationNeural Processing Letters, 164 (6) , p. 894 -897-
dc.identifier.urihttp://hdl.handle.net/1942/42140-
dc.description.abstractCost volume is widely used to establish correspondences in optical flow estimation. However, when dealing with low-texture and occluded areas, it is difficult to estimate the cost volume correctly. Therefore, we propose a replacement: feature correlation transformer (FCTR), a transformer with self-and cross-attention alternations for obtaining global receptive fields and positional embedding for establishing correspondences. With global context and posi-tional information, FCTR can produce more accurate correspondences for ambiguous areas. Using position-embedded feature allows the removal of the context network; the positional information can be aggregated within ambiguous motion boundaries, and the number of model parameters can be reduced. To speed up network convergence and strengthen robust-ness, we introduce a smooth L1 loss with exponential weights in the pre-training step. At the time of submission, our method achieves competitive performance with all published optical flow methods on both the KITTI-2015 and MPI-Sintel benchmarks. Moreover, it outperforms all optical flow and scene flow methods in KITTI-2015 foreground-region prediction.-
dc.language.isoen-
dc.publisher-
dc.subject.otherHumans-
dc.subject.otherDecision Trees-
dc.subject.otherRandom Forest-
dc.titleDecision trees and random forests-
dc.typeJournal Contribution-
dc.identifier.epage897-
dc.identifier.issue6-
dc.identifier.spage894-
dc.identifier.volume164-
local.format.pages4-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedEditorial Material-
dc.identifier.doi10.1016/j.ajodo.2023.09.011-
dc.identifier.pmid38008491-
dc.identifier.isiWOS:001125458300001-
local.provider.typePubMed-
local.uhasselt.internationalyes-
item.fullcitationBECKER, Thijs; ROUSSEAU, Axel-Jan; GEUBBELMANS, Melvin; BURZYKOWSKI, Tomasz & VALKENBORG, Dirk (2023) Decision trees and random forests. In: Neural Processing Letters, 164 (6) , p. 894 -897.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
item.contributorBECKER, Thijs-
item.contributorROUSSEAU, Axel-Jan-
item.contributorGEUBBELMANS, Melvin-
item.contributorBURZYKOWSKI, Tomasz-
item.contributorVALKENBORG, Dirk-
crisitem.journal.issn1370-4621-
crisitem.journal.eissn1573-773X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S0889540623005188-main.pdf
  Restricted Access
Published version326.22 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

64
checked on Oct 4, 2025

WEB OF SCIENCETM
Citations

49
checked on Oct 2, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.