Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/42140
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BECKER, Thijs | - |
dc.contributor.author | ROUSSEAU, Axel-Jan | - |
dc.contributor.author | GEUBBELMANS, Melvin | - |
dc.contributor.author | BURZYKOWSKI, Tomasz | - |
dc.contributor.author | VALKENBORG, Dirk | - |
dc.date.accessioned | 2024-01-16T14:36:01Z | - |
dc.date.available | 2024-01-16T14:36:01Z | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2024-01-09T19:07:59Z | - |
dc.identifier.citation | Neural Processing Letters, 164 (6) , p. 894 -897 | - |
dc.identifier.uri | http://hdl.handle.net/1942/42140 | - |
dc.description.abstract | Cost volume is widely used to establish correspondences in optical flow estimation. However, when dealing with low-texture and occluded areas, it is difficult to estimate the cost volume correctly. Therefore, we propose a replacement: feature correlation transformer (FCTR), a transformer with self-and cross-attention alternations for obtaining global receptive fields and positional embedding for establishing correspondences. With global context and posi-tional information, FCTR can produce more accurate correspondences for ambiguous areas. Using position-embedded feature allows the removal of the context network; the positional information can be aggregated within ambiguous motion boundaries, and the number of model parameters can be reduced. To speed up network convergence and strengthen robust-ness, we introduce a smooth L1 loss with exponential weights in the pre-training step. At the time of submission, our method achieves competitive performance with all published optical flow methods on both the KITTI-2015 and MPI-Sintel benchmarks. Moreover, it outperforms all optical flow and scene flow methods in KITTI-2015 foreground-region prediction. | - |
dc.language.iso | en | - |
dc.publisher | - | |
dc.subject.other | Humans | - |
dc.subject.other | Decision Trees | - |
dc.subject.other | Random Forest | - |
dc.title | Decision trees and random forests | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 897 | - |
dc.identifier.issue | 6 | - |
dc.identifier.spage | 894 | - |
dc.identifier.volume | 164 | - |
local.format.pages | 4 | - |
local.bibliographicCitation.jcat | A1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Editorial Material | - |
dc.identifier.doi | 10.1016/j.ajodo.2023.09.011 | - |
dc.identifier.pmid | 38008491 | - |
dc.identifier.isi | WOS:001125458300001 | - |
local.provider.type | PubMed | - |
local.uhasselt.international | yes | - |
item.fullcitation | BECKER, Thijs; ROUSSEAU, Axel-Jan; GEUBBELMANS, Melvin; BURZYKOWSKI, Tomasz & VALKENBORG, Dirk (2023) Decision trees and random forests. In: Neural Processing Letters, 164 (6) , p. 894 -897. | - |
item.fulltext | With Fulltext | - |
item.accessRights | Restricted Access | - |
item.contributor | BECKER, Thijs | - |
item.contributor | ROUSSEAU, Axel-Jan | - |
item.contributor | GEUBBELMANS, Melvin | - |
item.contributor | BURZYKOWSKI, Tomasz | - |
item.contributor | VALKENBORG, Dirk | - |
crisitem.journal.issn | 1370-4621 | - |
crisitem.journal.eissn | 1573-773X | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S0889540623005188-main.pdf Restricted Access | Published version | 326.22 kB | Adobe PDF | View/Open Request a copy |
SCOPUSTM
Citations
64
checked on Oct 4, 2025
WEB OF SCIENCETM
Citations
49
checked on Oct 2, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.