Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/42190
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMWANGI, Moses-
dc.contributor.authorVERBEKE, Geert-
dc.contributor.authorNjagi, Edmund Njeru-
dc.contributor.authorFlorez, Alvaro Jose-
dc.contributor.authorMwalili, Samuel-
dc.contributor.authorIVANOVA, Anna-
dc.contributor.authorBukania, Zipporah N.-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2024-01-19T11:58:09Z-
dc.date.available2024-01-19T11:58:09Z-
dc.date.issued2024-
dc.date.submitted2024-01-19T10:43:04Z-
dc.identifier.citationPharmaceutical statistics, 23 (3), p. 370-384-
dc.identifier.urihttp://hdl.handle.net/1942/42190-
dc.description.abstractCross-over designs are commonly used in randomized clinical trials to estimate efficacy of a new treatment. They have received a lot of attention, particularly in connection with regulatory requirements for new drugs. The main advantage of using cross-over designs over conventional parallel designs is increased precision, thanks to within-subject comparisons. In the statistical literature, more recent developments are discussed in the analysis of cross-over trials, in particular regarding repeated measures. A piecewise linear model within the framework of mixed effects has been proposed in the analysis of cross-over trials. In this article, we report on a simulation study comparing performance of a piecewise linear mixed-effects (PLME) model against two commonly cited models-Grizzle's mixed-effects (GME) and Jones & Kenward's mixed-effects (JKME) models-used in the analysis of cross-over trials. Our simulation study tried to mirror real-life situation by deriving true underlying parameters from empirical data. The findings from real-life data confirmed the original hypothesis that high-dose iodine salt have significantly lowering effect on diastolic blood pressure (DBP). We further sought to evaluate the performance of PLME model against GME and JKME models, within univariate modeling framework through a simulation study mimicking a 2 x 2 cross-over design. The fixed-effects, random-effects and residual error parameters used in the simulation process were estimated from DBP data, using a PLME model. The initial results with full specification of random intercept and slope(s), showed that the univariate PLME model performed better than the GME and JKME models in estimation of variance-covariance matrix (G) governing the random effects, allowing satisfactory model convergence during estimation. When a hierarchical view-point is adopted, in the sense that outcomes are specified conditionally upon random effects, the variance-covariance matrix of the random effects must be positive-definite. The PLME model is preferred especially in modeling an increased number of random effects, compared to the GME and JKME models that work equally well with random intercepts only. In some cases, additional random effects could explain much variability in the data, thus improving precision in estimation of the estimands (effect size) parameters.-
dc.description.sponsorshipCanadian International Food Security Research Fund (CIFSRF), Grant/Award Number: 106510 Special thanks to the team of investigators who participated in the original research work.35 The authors acknowledge financial support provided by the Government of Canada through Foreign Affairs, Trade and Development Canada (DFATD). The fund was channeled through Canadian International Food Security Research Fund (CIFSRF), a program of Canada's International Development Research Centre (IDRC), project number 106510.-
dc.language.isoen-
dc.publisherWILEY-
dc.rights2023 John Wiley & Sons Ltd.-
dc.subject.othercross-over design-
dc.subject.otherlongitudinal-
dc.subject.otherpiecewise model-
dc.subject.otherrepeated measures-
dc.titleEvaluation of a flexible piecewise linear mixed-effects model in the analysis of randomized cross-over trials-
dc.typeJournal Contribution-
dc.identifier.epage384-
dc.identifier.issue3-
dc.identifier.spage370-
dc.identifier.volume23-
local.format.pages15-
local.bibliographicCitation.jcatA1-
dc.description.notesMwangi, M (corresponding author), Univ Hasselt, I BioStat, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.-
dc.description.notesmoses.mwangi@uhasselt.be-
local.publisher.place111 RIVER ST, HOBOKEN 07030-5774, NJ USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1002/pst.2357-
dc.identifier.pmid38146135-
dc.identifier.isi001129701200001-
local.provider.typewosris-
local.description.affiliation[Mwangi, Moses; Verbeke, Geert; Ivanova, Anna; Molenberghs, Geert] Univ Hasselt, I BioStat, Diepenbeek, Belgium.-
local.description.affiliation[Mwangi, Moses; Bukania, Zipporah N.] Kenya Govt Med Res Ctr, Ctr Publ Hlth Res, Nairobi, Kenya.-
local.description.affiliation[Verbeke, Geert; Ivanova, Anna; Molenberghs, Geert] Katholieke Univ KU Leuven, L BioStat, Leuven, Belgium.-
local.description.affiliation[Njagi, Edmund Njeru] London Sch Hyg & Trop Med, Noncommun Dis Epidemiol, London, England.-
local.description.affiliation[Florez, Alvaro Jose] Univ Valle, Sch Stat, Cali, Colombia.-
local.description.affiliation[Florez, Alvaro Jose] Univ Hasselt, Data Sci Inst, I BioStat, Diepenbeek, Belgium.-
local.description.affiliation[Mwalili, Samuel] Jomo Kenyatta Univ Agr & Technol, Stat & Actuarial Sci, Nairobi, Kenya.-
local.description.affiliation[Mwangi, Moses] Univ Hasselt, I BioStat, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorMWANGI, Moses-
item.contributorVERBEKE, Geert-
item.contributorNjagi, Edmund Njeru-
item.contributorFlorez, Alvaro Jose-
item.contributorMwalili, Samuel-
item.contributorIVANOVA, Anna-
item.contributorBukania, Zipporah N.-
item.contributorMOLENBERGHS, Geert-
item.fullcitationMWANGI, Moses; VERBEKE, Geert; Njagi, Edmund Njeru; Florez, Alvaro Jose; Mwalili, Samuel; IVANOVA, Anna; Bukania, Zipporah N. & MOLENBERGHS, Geert (2024) Evaluation of a flexible piecewise linear mixed-effects model in the analysis of randomized cross-over trials. In: Pharmaceutical statistics, 23 (3), p. 370-384.-
item.accessRightsOpen Access-
crisitem.journal.issn1539-1604-
crisitem.journal.eissn1539-1612-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Main document.pdfPeer-reviewed author version786.94 kBAdobe PDFView/Open
Pharmaceutical Statistics - 2023 - Mwangi - Evaluation of a flexible piecewise linear mixed‐effects model in the analysis.pdf
  Restricted Access
Published version2.47 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.