Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/421
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTIBALDI, Fabian-
dc.contributor.authorCORTINAS ABRAHANTES, Jose-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorRENARD, Didier-
dc.contributor.authorBURZYKOWSKI, Tomasz-
dc.contributor.authorBUYSE, Marc-
dc.contributor.authorParmar, Mahesh-
dc.contributor.authorStijnen, Theo-
dc.contributor.authorWolfinger, Russ-
dc.date.accessioned2004-10-29T09:08:11Z-
dc.date.available2004-10-29T09:08:11Z-
dc.date.issued2003-
dc.identifier.citationJournal of Statistical Computation and Simulation, 73(9). p. 643-658-
dc.identifier.issn0094-9655-
dc.identifier.urihttp://hdl.handle.net/1942/421-
dc.description.abstractThe linear mixed-effects model (Verbeke and Molenberghs, 2000) has become a standard tool for the analysis of continuous hierarchical data such as, for example, repeated measures or data from meta-analyses. However, in certain situations the model does pose insurmountable computational problems. Precisely this has been the experience of Buyse et al. (2000a) who proposed an estimation- and prediction-based approach for evaluating surrogate endpoints. Their approach requires fitting linear mixed models to data from several clinical trials. In doing so, these authors built on the earlier, single-trial based, work by Prentice (1989), Freedman et al. (1992), and Buyse and Molenberghs (1998). While Buyse et al. (2000a) claim their approach has a number of advantages over the classical single-trial methods, a solution needs to be found for the computational complexity of the corresponding linear mixed model. In this paper, we propose and study a number of possible simplifications. This is done by means of a simulation study and by applying the various strategies to data from three clinical studies: Pharmacological Therapy for Macular Degeneration Study Group (1977), Ovarian Cancer Meta-analysis Project (1991) and Corfu-A Study Group (1995).-
dc.description.sponsorshipThe first, second, fourth, and fifth authors wish to thank "Bijzonder Onderzoeksfonds" of the Limburgs Universitair Centrum. We acknowledge support from Interuniversity Attraction Poles Programme P5=24-Belgian State-Federal Office for Scientific, Technical and Cultural Affairs.-
dc.format.extent1890546 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS LTD-
dc.rights(C) 2003 Taylor & Francis Ltd-
dc.subjectClustered data-
dc.subjectClinical trials-
dc.subject.otherlinear mixed model; macular degeneration; meta-analytic approach; oncology; random effects; surrogate endpoint-
dc.titleSimplified hierarchical linear models for the evaluation of surrogate endpoints-
dc.typeJournal Contribution-
dc.identifier.epage658-
dc.identifier.issue9-
dc.identifier.spage643-
dc.identifier.volume73-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1080/0094965031000062177-
dc.identifier.isi000185003800002-
item.fulltextWith Fulltext-
item.contributorTIBALDI, Fabian-
item.contributorCORTINAS ABRAHANTES, Jose-
item.contributorMOLENBERGHS, Geert-
item.contributorRENARD, Didier-
item.contributorBURZYKOWSKI, Tomasz-
item.contributorBUYSE, Marc-
item.contributorParmar, Mahesh-
item.contributorStijnen, Theo-
item.contributorWolfinger, Russ-
item.fullcitationTIBALDI, Fabian; CORTINAS ABRAHANTES, Jose; MOLENBERGHS, Geert; RENARD, Didier; BURZYKOWSKI, Tomasz; BUYSE, Marc; Parmar, Mahesh; Stijnen, Theo & Wolfinger, Russ (2003) Simplified hierarchical linear models for the evaluation of surrogate endpoints. In: Journal of Statistical Computation and Simulation, 73(9). p. 643-658.-
item.accessRightsOpen Access-
item.validationecoom 2004-
crisitem.journal.issn0094-9655-
crisitem.journal.eissn1563-5163-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
molg08.pdfPeer-reviewed author version1.85 MBAdobe PDFView/Open
tibaldi2003.pdf
  Restricted Access
Published version129.02 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.